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Krylov subspace method

Exercice 1: 1D projection process
For Sk,Ck k-dimensional subspaces of Cn, we recall that a projection process is defined by{

x(k) = x(0) + z(k), z(k) ∈ Sk

r(k) = b− Ax(k) ⊥ Ck.

We will consider in this exercise, 1D projection processes, i.e. k = 1 and S1 = Span(v)
and C1 = Span(w), for some vectors v, w ∈ Cn.

1. For A ∈ Rn×n symmetric and positive-definite, show that the projection process defined
with v = w = r(0) = b−Ax(0) is equivalent to one step of the steepest gradient descent.

2. Let A ∈ Rn×n be such that A+ AT is positive-definite.

(a) Let S1 = Span(r(0)) and C1 = Span(Ar(0)). Show that x(1) = x(0) + αr(0) with
α0 =

⟨r(0),Ar(0)⟩
⟨Ar(0),Ar(0)⟩ .

(b) Consider the sequence defined by for all k ≥ 0
r(k) = b− Ax(k)

αk =
⟨r(k), Ar(k)⟩
⟨Ar(k), Ar(k)⟩

x(k+1) = x(k) + αkr
(k).

(c) Show that ∥r(k+1)∥2 ≤ ∥r(k)∥2 − ⟨r(k),Ar(k)⟩2
∥Ar(k)∥2 .

(d) Deduce that ∥r(k+1)∥ ≤
(
1 − λ2

∥A∥2
)1/2∥r(k)∥ where λ is the smallest eigenvalue of

1
2
(A+ AT ).



Exercise 2: a Krylov method is better than a stationary
method
Let A ∈ CN×N be invertible and A = M − N a splitting of the matrix such that M is
invertible.

In this exercise, we want to compare the resolution of a linear system by the stationary
iterative method {

Mx
(k+1)
stat = Nx

(k)
stat + b, k ≥ 0

x
(0)
stat ∈ CN ,

(1)

with the Krylov method for the preconditioned system

M−1Ax∗ = M−1b. (2)

The Krylov iterates (x
(k)
kry), initialised for some x

(0)
kry are defined as

∥M−1b−M−1Ax
(k)
kry∥ = min

z∈x(0)
kry+Kk(M−1A,r

(0)
kry)

∥M−1b−M−1Az∥, (3)

where r
(k)
kry = M−1b−M−1Ax

(k)
kry.

1. Show that x
(k)
kry = x

(0)
kry + P (M−1A)r

(0)
kry where P is a polynomial of degree k − 1.

2. Deduce that r(k)kry = ϕ(M−1A)r
(0)
kry where ϕ is a degree k polynomial such that ϕ(0) = 1.

3. For the stationary iterative method, let r
(k)
stat = M−1b−M−1Ax

(k)
stat. Show that r

(k)
stat =

(id−M−1A)kr
(0)
stat.

4. Show that if x(0)
stat = x

(0)
kry then ∥r(k)kry∥ ≤ ∥r(k)stat∥ for all k ≥ 1.

Exercise 3: another proof of CG convergence rate
Let A be a HPD matrix with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and associated
eigenvectors y1, . . . , yn such that A = Y ΛY ∗ with Y = [y1, . . . , yn], Y ∗Y = id and
Λ = diag(λ1, . . . , λn).

Let x∗ ∈ Cn be the solution to Ax∗ = b. For x0 ∈ Cn, let (ζj)1≤j≤n be the coefficients
of

x∗ − x0 =
n∑

j=1

ζjyj. (4)

Let x̃0 be defined by

x∗ − x̃0 =
n−ℓ∑
j=1

ζjyj, (5)
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i.e. removing the contributions of the largest eigenvalues.
The goal of this exercise is to compare the CG iterates (xk) and (x̃k) starting respectively

from x0 and x̃0. We are going to show that for all k ≥ ℓ

∥x∗ − x̃k∥A ≤ ∥x∗ − xk∥A ≤ ∥x∗ − x̃k−ℓ∥A. (6)

1. Show that for any polynomial ϕ and vector v =
∑n

j=1 ηjyj, we have

∥ϕ(A)v∥2A =
n∑

j=1

λj|ϕ(λj)ηj|2.

2. Let ϕCG
k (resp. ϕ̃CG

k ) be the CG iteration polynomial associated to x0 (resp. x̃0).
Deduce that

∥ϕ̃CG
k (A)(x∗ − x̃0)∥A ≤ ∥ϕCG

k (A)(x∗ − x0)∥A,

and
∥x∗ − x̃k∥A ≤ ∥x∗ − xk∥A.

3. Prove that for k ≥ ℓ, ∥x∗ − xk∥A ≤ ∥x∗ − x̃k−ℓ∥A.

Hint: recall that ∥x∗ − xk∥A = min
ϕ∈Ck[X],ϕ(0)=1

∥ϕ(A)(x∗ − x0)∥A.

4. Let κℓ =
λn−ℓ

λ1
. Show that

∥x∗ − x̃k−ℓ∥A ≤ 2
(√κℓ − 1
√
κℓ + 1

)k−ℓ

∥x∗ − x̃0∥A,

and deduce
∥x∗ − xk∥A ≤ 2

(√κℓ − 1
√
κℓ + 1

)k−ℓ

∥x∗ − x0∥A.

Exercise 4: MINRES algorithm
The MINRES algorithm is deduced from GMRES by considering an invertible Hermitian
matrix A.

1. Suppose that A has eigenvalues λ1 ≤ · · · ≤ λs < 0 < λs+1 ≤ · · · ≤ λn. Show that

∥r(2k)∥ ≤ min
ϕ∈C2k[X],ϕ(0)=1

max
1≤i≤n

|ϕ(λi)|∥r(0)∥.

2. Deduce that
∥r(2k)∥ ≤ min

ϕ∈C2k[X],ϕ(0)=1
max

λ∈[λ1,λs]∪[λs+1,λn]
|ϕ(λ)|∥r(0)∥.
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3. Suppose that λn + λ1 − λs − λs+1 = 0. Let q(x) = 1 + 2 (x−λs)(x−λs+1)
λ1λn−λsλs+1

. Prove that
q([λ1, λs] ∪ [λs+1, λn]) = [−1, 1] and deduce that

min
ϕ∈C2k[X],ϕ(0)=1

max
λ∈[λ1,λs]∪[λs+1,λn]

|ϕ(λ)| ≤ 1

|Tk(q(0))|
,

where Tk is the k-th Chebyshev polynomial.

4. Show that q(0) = 1
2

(√
|λ1λn|−

√
|λsλs+1|√

|λ1λn|+
√

|λsλs+1|
+

√
|λ1λn|+

√
|λsλs+1|√

|λ1λn|−
√

|λsλs+1|

)
and deduce that the con-

vergence rate of the MINRES algorithm is bounded by

∥r(2k)∥ ≤ 2
(√|λ1λn| −

√
|λsλs+1|√

|λ1λn|+
√

|λsλs+1|

)k

∥r(0)∥.

Hint: you can use without proof that for all x ̸= 0, Tk

(
1
2
(x+ 1

x
)
)
= 1

2

(
xk + 1

xk

)
.

5. Suppose from now on that λn = −λ1 and λs+1 = −λs+1. Denote by κ the 2-norm
conditioning number of A. Show that

∥r(2k)∥ ≤ 2
(κ− 1

κ+ 1

)k

∥r(0)∥.

6. Equivalently, it is possible to solve A∗Ax = A∗b if we know A∗ (or the matrix-vector
product with A∗). Give the rate of convergence of the conjugate-gradient method in
that case, and compare to the rate obtained in the previous question.

Exercise 5: a GMRES example
Let A ∈ Rn×n be defined by

A =


1 −1 0 . . . 0

0 1 −1
. . . ...

... 0
. . . . . . ...

...
... 0 1 −1

0 0 0 0 1

 (7)

.

1. Show that for every 1 ≤ k ≤ n, there exists r(0) ∈ Rn such that GMRES stops in
exactly k steps.
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Exercise 6: stagnation of GMRES algorithm
The goal of this exercise is to show that for any prescribed eigenvalues λ1, . . . , λn ∈ C,
there exist a matrix A ∈ Cn×n with eigenvalues (λj) and a starting vector x(0) such that
the residuals r(k) of the GMRES algorithm stagnates for 0 ≤ k ≤ n−1, i.e. ∥r(k)∥ = ∥r(0)∥
for any 0 ≤ k ≤ n− 1.

Let C ∈ Cn×n be given by

C =


0 . . . 0 α0

1
. . . ...

...
. . . 0 αn−2

1 αn−1

 . (8)

1. Show that the characteristic polynomial of C is given by χ(λ) = det(λid − C) =
λn −

∑n−1
j=0 αjλ

j.

2. Explain how to set (αj) so that C has eigenvalues (λj)1≤j≤n.

3. Let (ek)0≤k≤n−1 be the canonical vectors of Cn. Show that for 1 ≤ k ≤ n−2, (e1, . . . , ek)
is an orthonormal basis of CKk(C, e0) = Span(Ce0, C

2e0, . . . , C
ke0).

4. Let b ∈ Cn. Assume that the GMRES algorithm is applied to Cx∗ = b with x(0) =
C−1(b− e0). Show that r(k) = e0 for all 0 ≤ k ≤ n− 1.

Exercise 7: quasi-minimal residual method
Let A ∈ Cn×n, x(0), b ∈ Cn and r(0) = b− Ax(0).

Let Vk+1 =
[
v1, . . . , vk+1

]
be a basis of the Krylov space Kk+1(A, r

(0)) such that

AVk = Vk+1Tk+1,

where Tk+1 ∈ C(k+1)×k is a tridiagonal matrix.
Such Vk+1 and Tk+1 can be constructed (under some assumption), using the nonhermi-

tian Lanczos algorithm. Note that since Tk+1 is tridiagonal, in general, Vk+1 does not have
orthogonal columns.
We consider the following algorithm

x(k+1) = x(0) + Vktk,where tk = argmin
t∈Ck

∥∥r(0)∥e1 − Tk+1t∥.

This iteration scheme is called the quasi-minimal residual (QMR) method.

1. What is the advantage of the QMR method compared to GMRES? What can we say
about QMR and GMRES in the case where Vk+1 has orthonormal columns?
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2. Show that ∥rQMR
k ∥ ≤ σmax(Vk+1)∥∥r(0)∥e1 − Tk+1tk∥, where σmax(Vk+1) is the smallest

singular value of Vk+1.

Hint: one can first prove that ∥Vk+1t∥ ≤ σmax(Vk+1)∥t∥ for all t ∈ Ck.

3. Show that the GMRES residual rGMRES
k can be written as rGMRES

k = Vk+1

(
∥r(0)∥e1 −

Tk+1t̂k
)

for some t̂k ∈ Ck.

4. Deduce that ∥rGMRES
k ∥ ≥ σmin(Vk+1)∥rQMR

k ∥, where σmin(Vk+1) is the smallest singular
value of Vk+1.

5. Show that ∥rQMR
k ∥ ≤ σmax(Vk+1)

σmin(Vk+1)
∥rGMRES

k ∥.
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