Exercises

1 Hadamard test

Let $U\in\mathbb{C}^{2^n\times 2^n}$ be a unitary matrix and ψ be an eigenvector of U with eigenvalue $e^{i\theta}$.

We will use a Hadamard test to estimate the value of the angle θ .

For the real part, we will use this circuit

Figure 1: Real part estimation

and for the imaginary part, this circuit

Figure 2: Imaginary part estimation

- 1. For the real part, check that the probability $p(q_0 = |0\rangle) = \frac{1}{2}(1 + \text{Re}(\langle \psi, U\psi \rangle))$. What happens if θ is close to π ?
- 2. For the imaginary part, check that the probability $p(q_0=|0\rangle)=\frac{1}{2}(1+\mathrm{Im}(\langle\psi,U\psi\rangle)).$

2 Block encoding

Let $A \in \mathbb{C}^{2^n \times 2^n}$ be a matrix such that $\|A\| \leq 1$.

If A is not unitary, then A cannot be implemented as a quantum algorithm. However, it may be a submatrix of a unitary matrix of a larger size. This technique is called *block encoding*. More precisely, we will say that $U_A \in \mathbb{C}^{2^{n+m} \times 2^{n+m}}$ is an (α, m) -block encoding of A if

$$\langle 0|^{\otimes m}\otimes I_nU_A|0\rangle^{\otimes m}\otimes I_n=\alpha A.$$

1. In matrix form, show that it is equivalent to

$$U_A = \begin{bmatrix} \alpha A & * \\ * & * \end{bmatrix}.$$

2. Using the SVD (U, Σ, V^*) of A, show that A has a (1, 1)-block encoding.

 $\textit{Hint: show that } \begin{bmatrix} \Sigma & \sqrt{I-\Sigma^2} \\ \sqrt{I-\Sigma^2} & -\Sigma \end{bmatrix} \text{ is a unitary matrix.}$

Suppose that the entries of A satisfy $|a_{ij}| \leq 1$ for all $1 \leq i, j \leq 2^n$. Let $O_A \in \mathbb{C}^{2^{2n+1} \times 2^{2n+1}}$ be the matrix defined by: for any $0 \leq i, j \leq 2^n$

$$O_A|0\rangle\otimes|i\rangle\otimes|j\rangle=(a_{ij}|0\rangle+\sqrt{1-|a_{ij}|^2}|1\rangle)\otimes|i\rangle\otimes|j\rangle$$

and

$$O_A|0\rangle\otimes|i\rangle\otimes|j\rangle = (-a_{ij}|1\rangle + \sqrt{1-|a_{ij}|^2}|0\rangle)\otimes|i\rangle\otimes|j\rangle.$$

- 3. Verify that O_A defines a unitary matrix.
- 4. Let U_A be the matrix defined by

$$U_A = (I_1 \otimes H^{\otimes n} \otimes I_n)(I_1 \otimes \operatorname{SWAP}) O_A(I_1 \otimes H^{\otimes n} \otimes I_n).$$

Show that U_A is a $(\frac{1}{2^n}, n+1)$ block encoding of A.

3 Simon problem

In the Simon problem, a function $f:\{0,1\}^n \to \{0,1\}^n$ is given which has the property

$$\exists s \in \{0,1\}^n, \forall x, y \in \{0,1\}^n, f(x) = f(y) \Rightarrow x = y \oplus s,$$

where \oplus is the component-wise addition (modulo 2) in $\{0,1\}^n$.

The goal is to determine the vector s.

3.1 Preliminary question

1. Show that if $s \neq 0$, then there is a unique pair $(x, y) \in \{0, 1\}^n$ such that f(x) = f(y).

In the Simon problem, we thus work only with functions f that are either 1-to-1 (if s=0) or 2-to-1.

3.2 Mathematical formulation of the quantum algorithm

In this tutorial, we will demonstrate the quantum advantage for this problem.

1. Show that classically, the cost to determine s is of the order 2^{n-1} .

Let U_f be a quantum gate acting on 2n qubits such that for $|x\rangle, |w\rangle$ two n-qubit states, we have

$$U_f(|x,w\rangle) = U_f(|x\rangle \otimes |w\rangle) = |x\rangle \otimes |f(x) \oplus w\rangle.$$

In this setting, U_f is called an *oracle*.

2. Check that $U_f^{-1}=U_f$ and deduce that it indeed defines a quantum gate.

We consider the following circuit to determine the period s.

Figure 3: Simon circuit

- 3. We suppose that the output of the measure of the last n qubits give $|f(x)\rangle$ for some quantum state x. Show that the output $|y\rangle$ of the first n qubits is such that $y \perp s$.
- 4. Suppose that the circuit above is run n+k times and the result of the first n qubits are stored in the vectors $(y_i)_{1 \leq i \leq n+k}$. Show that with probability at least $1-\frac{1}{2^{k+1}}$, $\operatorname{Span}(y_1,\ldots,y_{n+k})=s^{\perp}$.
- 5. Prove that the quantum algorithm exhibits a quantum advantage.