Quantum Computing Notes
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1 Notation

||l denotes the Euclidean norm on C™. * denotes the complex conjugate.

Definition 1.1 (Kronecker product). For A € C"™*™ and B € CP*9, the matrix A ® B is the Kronecker product of
A and B defined by

(A® B)jpe = AyBjy, for1 <i<m,1<j<p 1<k<n1<l<q

Proposition 1.1. Let A, B, C, D be matrices of compatible sizes. The following assertions are true

(A® B)(C® D) = (AC) ® (BD)

(AR B)* = A*® B*

* if A and B are unitary matrices, then A @ B is a unitary matrix

if (Uy,X4,V}) and (Ug, X, Vi) be singular value decompositions of A and B, then (Uy ® Ug, ¥, ®
X, Vi ® V) is a singular value decomposition of A ® B.



The first two statements are consequences of the definition of a Kronecker product. The other statements directly
follow from the first two statements.

2 Basics of Quantum Mechanics

2.1 Quantum State

Definition 2.1 (Quantum state). Let N € N. Let ~ be the equivalence relation on CV defined by
Vo, €CN p~1pIN£0EC, Y = N\

Let PCY be the quotient set CV by ~. A quantum state is an element of PCY .

Remark 2.1 (Dirac notation). For ¢y € CV 4 # 0, the corresponding quantum state is denoted by |¢). For ¢ €
(CN)*, ¢ # 0, the dual quantum state is denoted by (¢|. The scalar product between |$) and |)) is denoted by (B|1)).
If ¢, 4 € CV are such that ¢ = [ = 1 then (p|v)) = S | ¢34,

In the following, we will identify |+/) to a normalised representing vector ¢» € C~. Hence we will write the coor-

¥y
dinates of [¢)) in CV as | :

, where 3~ |1;]*> = 1. Note that by definition of the equivalence class, all vector
(N
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Remark 2.2. For |¢), [¢) quantum states, |1))(¢| denotes the projection onto 1 parallel to ¢ and is identified with a
matrix CV*,

representations of the form { } , for 0 € R, are equivalent.

2.2 Evolution of a quantum state
For |), |¢) quantum states, there exists a matrix U € CN*¥ such that |¢)) = U|¢).

Definition 2.2 (Schrodinger equation). Let (H ());~( be a family of Hermitian matrices, and [t)) a quantum state.
The Schrédinger evolution of a quantum state ¢ > () is defined as the solution to the equation
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One can check that if )| = 1 then for all t > 0, [[¢(¢)|| = 1.

Ift — H(t) is constant and equal to H, then the solution to the Schrodinger equation is 1(¢) = e'*t1),. This shows
that for Hermitian matrices H, the matrix ' is a unitary matrix. Conversely, one can show that any unitary matrix
U can be written as €' for some Hermitian matrix H.

2.3 Observables and measurements

Definition 2.3 (Observable). An observable O € CV*¥ is a Hermitian matrix. For |t/) a quantum state, the expec-
tation value denoted by ()|O|v) is equal to (1, Ov).

o . o N
Let O be an observable. Then O can be written in the basis of its eigenvectors as O = >~ A, P, , where

for 1 < m < N, P,, orthogonal projector, P, = |u,,)(u,,|. A quantum state |)) can be written in the basis



(u,,) as ¥ = Zi\ijzvl Dy Ugyy» With ZZZI |D,n|? = 1. Then the expectation value of the observable is (1)|O)) =
Tr(|[y)(]0) = 32,y Al

Definition 2.4 (Measurement). Let |t/) be a quantum state on CV and O € CV*¥ be an observable. Let (u,,) be

an orthonormal basis of eigenvectors of O. Let (p,,,) € C such that 1)) = Z;v:l Dy U, (With Zszl Ipml? = 1).
The measurement operator M for the observable O is the operator such that

M|Y) = u,,, with probability |p,, |*.

The measurement is, for a general quantum state |¢)) and observable O, a nonlinear operator. The output of the
measurement is probabilistic and depends on the expansion of the quantum state ¢ in the basis of eigenvectors of the
observable O.

Measurements are the only way to have access to the information contained in the quantum state |¢)). For efficient
quantum computations, it is thus important that the quantum state obtained after quantum computations has contribu-
tions in a few eigenvectors of the measured observable.

3  Quantum Computer

3.1 Qubit
Classical bit: b € {0,1}
Definition 3.1 (Quantum bit (qubit)). A quantum bit (or qubit) is a quantum state on C2.

1} and |1)

; il

A quantum bit [1)) € C? satisfies |1)) = 1)1 |0) + 15|1) with [1);]? + |1)5]?> = 1 (up to a global phase).

The canonical basis associated to the space of quantum bits on C? is denoted by |0) = [

A qubit can be parametrised by two angles Representation on the Bloch sphere:
, 0 o .0
[¥) = e(cos 5|0) + e sin S |1)),
where 0 < 0 < m, 0 < ¢ < 27 (recall that the global phase €*7 is not relevant).

Pauli gates

Definition 3.2. Let X,Y, Z € C?*2 be the Pauli matrices defined by
0 1 0 — 1 0
x=[ o] v=[ 3] 2=[ Af

Notice that the Pauli matrices X, Y, Z are Hermitian. They satisfy the commutation relations [ X, Y] = Z,[Y, Z] =
X,[Z,X] =Y. One can show that (I, X,Y", Z) is in fact a basis of Hermitian matrices. This means that unitary
evolutions of quantum states can be written as e'?X Y172 (a5 the global phase can be ignored).

This motivates the introduction of parametrised gates

(i0/2X _ cos(6/2) —z’sin(@/?)] (i0/2Y _ [005(0/2) —sin(6/2) JO/22T) _ [ei(?/z 0 ]
—isin(6/2)  cos(0/2) |’ sin(6/2)  cos(0/2) |’ 0 2]
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Figure 1: Bloch sphere

As the matrices X, Y, Z do not commute, we do not have XY +1Z — (i0Xi0Y V2 However, using what is

called Trotter splitting, we have that

n

lim e
n—oo
1=1

ClOXHPY +ivZ _ 0/nX gig/nY giv/nZ
- )

which motivates the use of the parametrised gates introduced above.

Measurement of one qubit

Measurements of a qubit are taken for the observable Z (except otherwise stated). The computational basis |0), |1)
is the basis that diagonalises Z, thus the measurement of a quantum state [1)) = t,|0) + 1;|1), gives |0) with
probability p, = |t),|? and |1) with probability p; = |11]*> = 1 — p,.

This means that the measurement is a Bernoulli random variable. The variance related to the estimation of the proba-
bility p, is equal to py(1 — py).

. . . - ber of measured [0
To estimate p,, one uses the empirical estimator p, = number of measured |0)

=3 . If IV is the total number of samples, and
otal number of samples

assuming that each measurement is independent, the variance of the empirical estimator is w

. To guarantee
that the standard deviation of the empirical estimator is below some threshold €, we must have %_p‘)) < €2, thus
N> Po(1—py)

il 62 .
For a small probability p,, an accurate estimation of the probability p, requires to have € < p,, which means that
the number of samples needs to be much larger than i. This is another important restriction in designing efficient
algorithms in quantum computing.

Other important one-qubit gates



Function Description Matrix Representation Usage

11

H Hadamard gate l vz V2 } H(qubit)
V2 V2

S Phase gate (or S gate) [(1) (Z)] S(qubit)
1 0 .

T T gate 0 ein/d T(qubit)

3.2 Collection of many qubits or the quantum register
A classical register is a collection of classical bits b = (b, ..., b,,), b; € {0,1},i=1,...,n.

rvn

Definition 3.3 (Quantum register). A quantum register on n qubits is a quantum state on ®7:1 c2.

The space ®?: C? can be identified with C2". Its canonical basis, also called the computational basis is the set of

the canonical basis of C2". These vectors are denoted by |q; ... g,,), where (g;,) € {0,1}. They correspond to the
J — th canonical vector, j € {0, ...,2" — 1}, where j = ZZ=1 qk27k (i.e. (g;,) is the binary decomposition of 7). It
is also customary to denote the quantum state |7).

Example 3.1 (Kronecker products of qubits). If [);) € C?, |1by) € C?, [¢) = [h;) ® |1hy) is a 2-qubit state.
1
1 1 0
e =g e |- [o
0

Remark 3.1 (Entanglement). The quantum states seen so far are given as Kronecker products. The power of quantum
computing lies in the manipulation of entangled states, that cannot be obtained from Kronecker products of quantum
states. For example, the Bell state |)) = %(|0> ® [0) + |1) ® |1)) cannot be written as a Kronecker product of one

qubit state.

3.3 No-Cloning Theorem

Theorem 3.1 (No cloning). Let |s) € C™ be a quantum state. There is no unitary matrix U € C"*** such that for
any |¢) € C"™, we have

Ulp) ©|s) = [¥) © ).

Proof. Let U be such that for any |¢)) € C", we have

Ulp) ®s) = [¥) © ).
Let |¢) € C™ such that (¢|1)) = 0 or 1. Then U|p) ® |s) = |¢) ® |$). Thus we have

(0l ® (0]Y) ® [¢) = (s| © (|U"Uls) ® |¢))
(Dl1)? = (dl0).

This means that either {(¢|¢)) = 0 or {p|1)) = 1: contradiction. O

This theorem has a crucial consequence in the design of quantum algorithms: a vast majority of classical algorithms
are iterative (Newton, root finding, conjugate-gradient...) which requires to store a copy of some iterate. In quantum



computing, as it is impossible to copy arbitrary quantum states, the design of quantum algorithms cannot be a simple
transposition of efficient classical algorithms.

Following the proof of the no-cloning theorem, it is however possible to copy some quantum states:

» for known quantum states [1)), |s), if aunitary U, suchthat U, [s) = [¢), then (/@U,)(|¥)®[s)) = |¢)®[v);
« for quantum state |7) in the computational basis, then any state |k) in the computational basis can be copied, i.e.
forany 0 < j < n — 1, there is U such that forany 0 < k < n — 1, we have

Ulk) ©1j) = |k) @ [k).

For n = 4 and j = 0, this unitary is the CNOT gate: CNOT(|k) ® |0)) = |k) ® |k). One can check that if
|1h) = 1ho|0) + b, |1) with 4hy1p; # 0, then CNOT|3)) ® |0) = 1)5|00) + 1, [11) # [)) ® |1)).

3.4 Gates

Linear operations on quantum registers are called gates. These linear operations are necessarily unitary operators.

In classical computing, any operation on classical registers can be implemented using combinations of only a few
gates (for example, using only NAND or NOR gates).

In quantum computing, any operation can be implemented using only one or two-qubit gates (i.e. gates that operate
only on one or two qubits).

It is possible to further restrict this set, if we give up on the exact representation of the unitary U, i.e. for a given
accuracy € > 0, we want to find (Uy, ..., U,,,) such that

¢ HU - UmUmfl Ul H <¢,
* (Uy)1<k<m belongs to a (small) set of universal gates.

There are multiple choices of universal gates such as { H, T, CNOT} or { H, Toffoli} (see their definitions below).
A natural question is to check whether there are sets of universal gates that are better than others. The answer is given
by the following theorem.

Theorem 3.2 (Solovay-Kitaev). Let §,T be two sets of universal gates that are closed under inverses. Then any
m-gate circuit using the gate set 8 can be implemented to precision € using a circuit of O(m polylog(m/e€)) gates
from the gate set T .

Asymptotically, the Solovay-Kitaev theorem states that any choice of sets of universal gates leads to a comparable
number of quantum operations.

3.5 Summary of the common quantum gates

Here is a list of common quantum gates as well as the corresponding command in MyQLM. A quantum algorithm is
simply a series of quantum gates applied to a initial quantum state (which is generally the state |0)).

Constant gates

Function Description Matrix Representation Usage

X Pauli-X gate, NOT gate [(1) é] X(qubit)
. 0 — .

Y Pauli-Y gate i 0 Y(qubit)
. 1 0 .

Z Pauli-Z gate 0 —1 Z(qubit)



Function Description Matrix Representation Usage
1 1
H Hadamard gate l vz V2 } H(qubit)
V2 V2
S Phase gate (or S gate) [é (z)] S(qubit)
1
T T gate [0 ei”/4] T(qubit)
T 0 0 O
01 00 .
CNOT CNOT (Controlled NOT) 000 1 CNOT (control_qubit,
gate 00 1 0 target_qubit)
T 0 0 0 0 0 0 07
01 00 0 O0O0TO0
0O 01 00 0 0O
CCNOT Toffoli gate (or CCNOT 8 8 8 (1) (1) 8 8 8 CCNOT (control_qubitl,
gate). 000007100 Eontrzl_q};}i;2 s
0000O0GO0TO0 1 arget_qubl
(0 0 0 00O 0 1 04
m 0 0 O
. 01 0 O .
CSIGN Controlled Sign or C-Z 001 0 CSIGN(control_qubit,
gate 00 0 —1 target_qubit)
T 0 0 O
SWAP SWAP gate 8 (1) (1) 8 SWAP (qubitl,
00 0 1 qubit?2)
r1 0 0 0
0 f(1+4) La—4) o
SQRTSWAP Square Root of SWAP 0 i<1 —i) i(l +i) 0 SQRTSWAP (qubit1,
gate. It creates a 0 2 0 Y3 0 ! 1 qubit2)
superposition of swapped B
and non-swapped states.
T 0 0 O
ISWAP iISWAP gate. It swaps the 8 (Z) 6 8 ISWAP(qubitl,
states of two qubits with a 00 0 1 qubit2)

phase factor of i.

In this list, the CNOT, CSIGN, SWAP, SQRTSWAP and ISWAP are unitary operators acting on two qubits. It can
be proved that these unitary operations cannot be written as the Kronecker product of two one-qubit gates.

The Toffoli gate is a 3-qubit gate that also cannot be written as a Kronecker product of one-qubit gates.

Parametrised gates



Function Description Matrix Representation Usage

RX(0) Rotation around the —(;0581519(@3)2) _(30851?9(54)2 )] RX (theta) (qubit)
X-axis by an angle 0. -

RY(0) Rotation around the cs?nség//g)) ;s:zéa/ﬁ)} RY (theta) (qubit)
Y-axis by an angle 6. -

r—i6/2

RZ(0) Rotation around the € 0 Z—S /2] RZ(theta) (qubit)
Z-axis by an angle 0. L ¢

PH(¢) Phase gate that leaves |0) (1) 694 PH(phi) (qubit)
unchanged and maps |1) -
to e*?|1).

3.6 Quantum circuit

Quantum circuits are graphical representations of quantum algorithms. They show how quantum gates are applied to
qubits over time.

Qubits and Wires

* Qubits: each qubit is represented by one horizontal line (a wire) in a circuit diagram.
« Initial State: qubits start in the |0) state unless otherwise specified.

Example in MyQLM

The following piece of code displays a quantum register initialised (by default) at |00).

from gat.lang.AQASM import Program

from qat.core.printer import plot_in_notebook

import matplotlib.pyplot as plt

my_program = Program()

qregister = my_program.qalloc(2) #allocates 2 qubits

circuit = my_program.to_circ()
plot_in_notebook(circuit,fmt='pdf') #circuit.display() works too

Jn —

1 —

Gates
Gates are represented by boxes or dots in the quantum circuit. Their applications are read from left to right.
Example for one qubit in MyQLM

The following piece of code displays the quantum algorithm X H0).

from gat.lang.AQASM import Program

from qat.lang.AQASM import H, X #import the Hadamard gate and the CNOT gate
my_program = Program()

gregister = my_program.qalloc(1l) #allocates 2 qubits

H(qregister[0]) #first apply Hadamard gate

X(qregister[0]) #then apply X gate



circuit = my_program.to_circ()
plot_in_notebook(circuit,fmt="'pdf') #circuit.display() works too

0y H X

Example for two qubits in MyQLM

The following piece of code displays the quantum algorithm (I ® Y')(X ® I)(H & I)|00).

from gat.lang.AQASM import Program

from gat.lang.AQASM import H, X, Y #import the Hadamard gate and the CNOT gate
my_program = Program()

gregister = my_program.qalloc(2) #allocates 2 qubits

H(qregister[0]) #first apply Hadamard gate on the first qubit

X(qregister[0]) #then apply X gate on the first qubit

Y(qregister[1]) #then apply X gate on the first qubit

circuit = my_program.to_circ()

plot_in_notebook(circuit,fmt='pdf') #circuit.display() works too

[y H X —

| Y

Note that since (I ® Y') and (X ® I')(H ® I), the quantum operations are squashed to the left.
CNOT gate in MyQLM

The following piece of code displays the quantum algorithm CNOT|00).

from gat.lang.AQASM import Program

from gat.lang.AQASM import CNOT #import the Hadamard gate and the CNOT gate

my_program = Program()

gregister = my_program.qalloc(2) #allocates 2 qubits

CNOT (qregister[0] ,qregister[1]) #first apply the CNOT gate with the 1st qubit as the control and 2nd as th
circuit = my_program.to_circ()

plot_in_notebook(circuit,fmt="'pdf') #circuit.display() works too

iy
(1

SWAP gate in MyQLM

The following piece of code displays the quantum algorithm SWAP|00).

from qat.lang.AQASM import Program
from qat.lang.AQASM import SWAP #import the Hadamard gate and the CNOT gate



my_program = Program()

gregister = my_program.qalloc(2) #allocates 2 qubits

SWAP (qregister[0] ,qregister[1]) #first apply the CNOT gate with the 1st qubit as the control and 2nd as th
circuit = my_program.to_circ()

plot_in_notebook(circuit,fmt='pdf') #circuit.display() works too

X

Complexity of a quantum algorithm

Remark 3.2 (Clifford gates). Clifford gates are quantum gates that stabilises the group formed by Kronecker products
of Pauli matrices (i.e. if C'is a Clifford gate and P a Kronecker product of Pauli matrices, then C' PC* is a Kronecker
product of Pauli matrices). It can be checked that the Hadamard gate, the CNOT gate are Clifford gates, but not the T’
gate. Since these gates stabilise the group of Kronecker product of Pauli matrices, they can be classically simulated
in polynomial time.

The complexity of quantum algorithms is estimated in three different ways:

+ the depth of the circuit: the depth of the circuit is the maximal number of gates along any path from an input and
an output. It is a reasonable depiction of the total run time of a quantum simulation. One of the main challenge
in the design of physical quantum computers is in maintaining the coherence time of the quantum system. The
coherence time is the longest period during which the quantum system accurately preserves the outcome of a
quantum algorithm. Nowadays, the maximal coherence time is of the order of 0.1 ms and the total number of
operations that can be performed is of the order 102, 10,

* the number of two qubit gates in the quantum algorithm: CNOT gates have a probability of failure of about
1%, whereas one-qubit gates typically have failure rates of about 0.1% (or sometimes lower than that). The
accuracy of a quantum algorithm depends heavily on the number of two-qubit gates.

+ the number of 7" gates in the quantum algorithm: to a lesser extend, the complexity of a quantum algorithm can
also be estimated by counting the number of T’ gates. If a quantum algorithm is expressed in the universal gate
set { H, T, CNOT}, the only non-Clifford gate is the T gate. As Clifford gates are classically easy to emulate,
the quantum advantage can be estimated as the total number of 7" gates.
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