
Calcul scientifique pour les grands systèmes
linéaires

Mi-Song Dupuy

Sorbonne Université
Master 1 Mathématiques et Applications

Parcours HPC
MU4MA053

2024 - 2025

Attribution-NonCommercial-ShareAlike 4.0 International

2

Contents

1 Reminders on matrix analysis 7
1.1 Vector and matrix norms . 7

1.1.1 Eigenvalues, eigenvectors, spectral radius 9
1.2 Condition number . 10
1.3 Matrix factorisations . 10

1.3.1 Schur decomposition . 10
1.3.2 Eigenvalue decomposition . 11
1.3.3 Singular value decomposition . 13

2 Direct linear solvers 17
2.1 Introduction . 17
2.2 Triangular systems . 18
2.3 Gaussian elimination . 19
2.4 LU decomposition . 21
2.5 Factorisation algorithm . 22
2.6 Partial pivoting . 23
2.7 Theoretical results regarding the LU factorisation 25
2.8 Cholesky factorisation . 27

3 Stationary iterative methods 29
3.1 Principle of stationary iterative methods . 30

3.1.1 Convergence of stationary iterative methods 31
3.2 Classical iterative methods . 32

3.2.1 Jacobi method . 32
3.2.2 Gauss-Seidel method . 32
3.2.3 Successive over relaxation (SOR) method 33

3.3 Richardson iteration . 34
3.3.1 Interpretation as a gradient descent method 36
3.3.2 Steepest descent . 36

3.4 Stationary iterative methods in the XXIst century 37

4 Krylov subspace methods 39
4.1 Projection process . 39

4.1.1 Definition and well-posedness of the projection process 39
4.1.2 Krylov subspace methods . 40

4.2 The conjugate gradient algorithm . 43

3

4 CONTENTS

4.2.1 The Arnoldi algorithm . 43
4.2.2 The practical CG algorithm . 45
4.2.3 Convergence of the CG algorithm . 48
4.2.4 Preconditioned conjugate gradient algorithm 50
4.2.5 Conjugate gradient algorithm in the XXIst century 52

4.3 GMRES . 52
4.3.1 The mathematical characterisation and the minimisation problem 53
4.3.2 The QR factorisation . 53
4.3.3 The GMRES algorithm . 55
4.3.4 Restarted GMRES . 56
4.3.5 Convergence of GMRES . 58
4.3.6 Beyond GMRES? . 59
4.3.7 GMRES in the XXIst century . 62

5 Eigenvalue problems 63
5.1 Single vector iteration methods . 63

5.1.1 Power iteration . 63
5.1.2 Inverse power iteration . 65

5.2 Krylov methods . 67

Introduction

These notes present the classical numerical methods to solve linear systems, by direct (Chap-
ter 2) and iterative methods (Chapters 3 and 4). A chapter is also devoted to a short intro-
duction on eigenvalue problems (Chapter 5).

The focus in this course, is on the well-posedness, in the mathematical sense, of the
algorithms and the convergence theory of the iterative methods. A classical and exhaustive
text on numerical linear algebra is the book by G. Golub and C. Van Loan [GL13].

The present notes are of course inspired by other texts. Chapter 2 and Chapter 3 come
from earlier notes by Xavier Claeys. The presentation of the Krylov subspace methods is
heavily influenced by the book by J. Liesen and Z. Strakos [LS12]. Finally the presentation
of the eigenvalue problems has been inspired by the classical text by Y. Saad [Saa11].

Although the notion of conditioning is present in these notes, preconditioning is not cov-
ered. The stability of algorithms which is crucial in the implementation of the methods is also
absent. A good reference on that topic is the book by N. Higham [Hig02].

The interested reader that would like to dig deeper into the iterative methods for linear
systems can also look into the other classical book by Y. Saad [Saa03]. Finally, let us mention
the recent and compact monograph [CG22], where the basic methods for linear systems are
covered as well as hindsight on modern methods, that are not covered in this course, like
preconditioning or multigrid methods.

5

6 CONTENTS

Chapter 1

Reminders on matrix analysis

In this chapter, we will review basic notions of matrix analysis. For a more advanced discus-
sions, see the book by Horn and Johnson [HJ13]. The singular value decomposition will also
be presented, especially its relationship with the best low-rank approximation.

1.1 Vector and matrix norms

Given an integer n ≥ 0, we recall that a norm over Cn is an application ∥ · ∥∗ : Cn → R+

satisfying: for all v, w ∈ Cn and all λ ∈ C

• ∥v∥∗ = 0 ⇒ v = 0

• ∥v + w∥∗ ≤ ∥v∥∗ + ∥w∥∗

• ∥λv∥∗ = |λ| ∥v∥∗

Let us mention three classical norms. Given a vector u = (uj)
n
j=1 ∈ Cn, we define

∥u∥1 :=
∑n

j=1 |uj |

∥u∥2 := (
∑n

j=1 |uj |2)1/2

∥u∥∞ := supj=1...n |uj |

It can be easily verified that each of these three applications is indeed a norm. Besides, let
us point that ∥ · ∥2 is the norm naturally attached to the scalar product1 (u, v) 7→ uT v = u∗v
over Cn. As such the 2-norm is invariant under unitary transformations U ∈ Cn×n: i.e.
∥Uv∥22 = (Uv)∗Uv = v∗U∗Uv = v∗v = ∥v∥22.

Let us recall that these norms are equivalent as Cn is a finite dimensional space: we have
∥u∥1 ≤

√
n∥u∥2 ≤ n∥u∥∞ ≤ n∥u∥1 for all u ∈ Cn.

The choice of a vector norm ∥ · ∥∗ over Cn induces a norm over matrices Cn×n defined by

∥A∥∗ := sup
u∈Cn\{0}

∥Au∥∗
∥u∥∗

for A ∈ Cn×n. (1.1)

1Note that as opposed to the usual mathematical convention, here it is the physicists’ convention that is
chosen, where the left argument is complex-conjugated

7

8 CHAPTER 1. REMINDERS ON MATRIX ANALYSIS

A norm over Cn×n taking the form above is said to be induced2. Induced norms possess the
following elementary property.

Lemma 1.1. If ∥ ∥∗ is an induced norm over Cn×n then ∥Ak∥∗ ≤ ∥A∥k∗ for all A ∈ Cn×n, k ≥
0.

In the following, in an abuse of notation, we will denote ∥ · ∥1 the matrix norm induced by
∥ · ∥1. Similarly we will denote ∥ · ∥2 and ∥ · ∥∞, the matrix norms induced by the vector
norms ∥ · ∥2 and ∥ · ∥∞.

Remark 1.2. There exist matrix norms that are not induced. Let A = (aj,k) ∈ Cn×n, let
tr(A) :=

∑n
j=1 aj,j refer to its trace. In addition, we shall denote A∗ := (A)T its adjoint i.e.

its hermitian transpose. Then the application (A,B) 7→ tr(B∗A) provides a scalar product over
Cn×n. The norm associated to this scalar product, called the Frobenius norm

∥A∥F :=
√
tr(A∗A) =

n∑
j=1

n∑
k=1

∥aj,k∥2

is not induced. Indeed if it was, one would necessarily have ∥ id ∥∗ = 1. However in the case
of the Frobenius norm, a direct calculation shows that ∥ id ∥F =

√
n.

Some matrix norms have an explicit formula.

Proposition 1.3. For any matrix A = (aj,k) ∈ Cn×n, we have

∥A∥1 = sup
k=1...n

n∑
j=1

|aj,k|

∥A∥∞ = sup
j=1...n

n∑
k=1

|aj,k|

Proof. We start by proving the identity for ∥A∥1. Given a vector u = (uk)
n
k=1 ∈ Cn \ {0},

applying a simple triangular inequality yields

∥Au∥1 =
n∑

j=1

∣∣∣ n∑
k=1

aj,kuk

∣∣∣ ≤ n∑
j=1

n∑
k=1

|aj,k| |uk|

≤
n∑

k=1

|uk|
(n∑

j=1

|aj,k|
)
≤ ∥u∥1 sup

k=1...n

n∑
j=1

|aj,k|

Since this holds for all u ∈ Cn \ {0}, dividing the last inequality by ∥u∥1 and taking the
supremum with respect to u, we obtain that ∥A∥1 ≤ supk=1...n

∑n
j=1 |aj,k|. To conclude we

can construct a u⋆ ∈ Cn such that ∥Au⋆∥1/∥u⋆∥ = supk=1...n

∑n
j=1 |aj,k|. Pick k⋆ ∈ {1 . . . n}

such that supk=1...n

∑n
j=1 |aj,k| =

∑n
j=1 |aj,k⋆ |. It suffices then to define u⋆ = (uk) by uk = 0

if k ̸= k⋆ and uk⋆ = 1.

Let us now examine the case of ∥A∥∞. Similarly to what precedes, for an arbitrary u ∈ Cn

we have

∥Au∥∞ = sup
j=1...n

∥∥∥ n∑
k=1

aj,kuk

∥∥∥ ≤ sup
j=1...n

n∑
k=1

|aj,k| ∥u∥∞.

2It is also common to call induced norms, subordinated norms or operator norms

1.1. VECTOR AND MATRIX NORMS 9

Again dividing by ∥u∥∞ and taking the supremum of the left hand side with respect to u, we
obtain ∥A∥∞ ≤ supj=1...n

∑n
k=1 |aj,k|. Let us prove that this upper bound is reached. Choose

j⋆ such that
∑n

k=1 |aj⋆,k| = supj=1...n

∑n
k=1 |aj,k|. We can take u⋆ = (uk) ∈ Cn with entries

given by uk = aj⋆,k/|aj⋆,k|, and we then obtain ∥Au∥∞/∥u∥∞ = supj=1...n

∑n
k=1 |aj,k|.

1.1.1 Eigenvalues, eigenvectors, spectral radius

The set of eigenvalues is a fundamental concept for a square matrix

Definition 1.4. Let A ∈ Cn×n. If λ ∈ C and x ∈ Cn a nonzero vector satisfy the equation

Ax = λx,

then λ is called an eigenvalue of A and x is called an eigenvector of A associated with the
eigenvalue λ.

The eigenvalues of a matrix are thus associated to the roots of its characteristic polynomial
p(X) = det(X id−A).

We say that a matrix A is diagonalisable if there is an invertible matrix P ∈ Cn×n and
a diagonal matrix D ∈ Cn×n such that A = PDP−1. By the fundamental theorem of alge-
bra, the characteristic polynomial can be factorised in C, thus any matrix has at least one
eigenvalue. A matrix may not be diagonalisable, although its characteristic polynomial can
be factorised. A typical example is the following nilpotent matrix N = (nij)1≤i,j≤n where
ni,i+1 = 1 and the other entries are equal to 0. Its characteristic polynomial is Xn, thus 0
is an eigenvalue. However, there is only one eigenvector associated to 0, which is the first
canonical vector e1 = [1, 0, . . . , 0]T .

Remark 1.5 (Geometric and algebraic multiplicities). An eigenvalue λ of a matrix A can be
associated to multiple eigenvectors. We call the geometric multiplicity the dimension of the
space associated to Ker(λ id−A), also called the eigenspace associated to λ.

Since λ is also the root of the characteristic polynomial, another notion of multiplicity can
be defined. We call the algebraic multiplicity the multiplicity of λ as a root of the characteristic
polynomial of A.

The algebraic multiplicity is always larger than the geometric multiplicity. Indeed, since
the characteristic polynomial is invariant under similarity transform, i.e. transformation of
a matrix A into P−1AP for invertible matrices P , then by choosing P to be eigenvectors of
A and completing the basis if needed, one can quickly check that the algebraic multiplicity is
always at least as large as the geometric multiplicity. The example of the nilpotent matrix
exhibited earlier shows that these two notions can differ for a given matrix. The relationship
of between both have been exhaustively studied from the early days of linear algebra, and the
reader is referred to [HJ13, Chapter 1] for a more thorough exposition.

Definition 1.6. The spectrum of A ∈ Cn×n is the set of all λ ∈ C that are eigenvalues of A.
We denote this set by σ(A).

The largest eigenvalue plays an important role in the convergence of the stationary iterative
methods that will be covered in Chapter 3.

Definition 1.7 (Spectral radius). For A ∈ Cn×n, the spectral radius of A, denoted ϱ(A) is
defined by ϱ(A) = sup{|λ|, λ ∈ σ(A)}, where σ(A) is the set of eigenvalues of A.

10 CHAPTER 1. REMINDERS ON MATRIX ANALYSIS

Remark 1.8. Note that the spectral radius is not a matrix norm. Indeed the nilpotent matrix
N = (Nij) such that nij = 0 for i ≥ j has eigenvalues 0 but the matrix is nonzero whenever
nij ̸= 0 for some i < j.

For any induced matrix norm ∥ ∥∗ over Cn×n we have ϱ(A) ≤ ∥A∥∗, for any A ∈ Cn×n.
The converse cannot be true, however for any matrix A ∈ Cn×n, for any ε > 0, there is a
vector norm ∥ · ∥∗ such that the corresponding matrix norm satisfies ∥A∥∗ ≤ ϱ(A) + ε (see
Proposition 3.2).

For hermitian matrices, i.e. for matrices A such that A = A∗, their eigenvalues have an
additional variational characterisation, known as the Courant-Fischer principle (see Proposi-
tion 1.12).

1.2 Condition number

Although to any norm is attached a condition number, most of the time one considers the
so-called “quadratic” condition number attached to the norm ∥ · ∥2. For a matrix A ∈ Cn×n,
it is defined by

cond2(A) := ∥A∥2∥A−1∥2. (1.2)

This quantity is only meaningful for an invertible matrix i.e. whose kernel is trivial Ker(A) =
{0}. The condition number is systematically greater than 1. Indeed 1 = ∥ id ∥2 = ∥A·A−1∥2 ≤
∥A∥2∥A−1∥2 = cond2(A).

The next proposition shows that the condition number quantifies the sensibility of a linear
system with respect to perturbations.

Theorem 1.9. Consider A ∈ Cn×n invertible and b, δb ∈ Cn with b ̸= 0. Let x, δx ∈ Cn refer
to vectors such that Ax = b and A(x+ δx) = b+ δb. Then we have

∥δx∥2
∥x∥2

≤ cond2(A)
∥δb∥2
∥b∥2

.

Proof. We have A(x + δx) = Ax + Aδx = b + δb hence Aδx = δb and thus δx = A−1δb.We
then deduce ∥b∥2 ≤ ∥A∥2∥x∥2 on the one hand, and ∥δx∥2 ≤ ∥A−1∥2∥δb∥2 on the other hand.
Multiplying the last two inequalities, and dividing by ∥x∥2∥b∥2, we finally obtain the required
inequality.

1.3 Matrix factorisations

We will review here important matrix factorisations.

1.3.1 Schur decomposition

Proposition 1.10. For any square matrix A ∈ Cn×n, there exists a unitary matrix Q ∈ Cn×n

such that Q∗AQ is upper triangular. Moreover the diagonal elements of Q∗AQ are eigenvalues
of A.

In other words, any matrix in Cn×n is unitarily equivalent to a triangular matrix. Con-
ceptually, this factorisation theorem is a consequence of the fundamental theorem in algebra,
which asserts that any polynomial in C[X] can be factorised.

1.3. MATRIX FACTORISATIONS 11

Proof. Let A ∈ Cn×n be a square matrix.
Assuming that there exists a unitary matrix Q such that T = Q∗AQ is upper triangular,

since A and T share the same characteristic polynomial, the diagonal elements of T are the
eigenvalues of A.

We now prove by induction over the dimension n that there is a unitary matrix Q such
that Q∗AQ is upper triangular. It trivially holds for n = 1. Suppose that the result holds
for n − 1 and let us prove that it still holds for n. There exists λ ∈ C and q1 ∈ Cn, with
∥q1∥2 = 1 such that Aq1 = λq1. We can find linearly independent vectors q2, . . . , qn such that
(q1, . . . , qn) forms an orthonormal basis of Cn. For each k = 2 . . . n, there are coefficients αk

and βj,k ∈ C, j = 2 . . . n such that

Aqk = αkq1 +

n∑
j=2

βj,kqj k = 2 . . . n (1.3)

Note B = (Bj,k) ∈ C(n−1)×(n−1) defined by the coefficients Bj,k = βj+1,k+1, as well as the
vector α := (α2, . . . , αn)

T ∈ Cn−1. Let us also define Q̃ := [q1, . . . , qn] the matrix associated
to basis we have just defined. Writing the matrix representation of (1.3) then leads to

Q̃∗AQ̃ =

[
λ αT

0 B

]
. (1.4)

By the induction hypothesis, there exists QB ∈ C(n−1)×(n−1) invertible such that TB :=

Q∗
BBQB ∈ C(n−1)×(n−1) is upper triangular. Setting Q̃B =

[
1

QB

]
∈ Cn×n, we then obtain

(
Q̃Q̃B

)∗
AQ̃Q̃B =

[
1

Q∗
B

] [
λ αT

0 B

] [
1

QB

]
=

[
λ αTQB

TB

]
.

Note that Q̃Q̃B is unitary. As the matrix on the right hand side above is upper triangular, it
concludes the induction, and hence the proof.

The Schur decomposition is a versatile tool in linear algebra as it applies to any matrix in
Cn×n.

1.3.2 Eigenvalue decomposition

Theorem 1.11 (Eigenvalue decomposition). Let A be a hermitian matrix. Then there exist
a unitary matrix Q and a diagonal matrix Λ with real entries such that A = QΛQ∗.

Any hermitian matrix is unitarily equivalent to a diagonal matrix with real entries.

Proof. Let Q,T ∈ Cn×n be a Schur decomposition of A, i.e. such that Q is unitary, T is upper
triangular and A = QTQ∗. Then since A is hermitian, A = A∗ thus QTQ∗ = QT ∗Q∗, hence
T = T ∗. Since T is upper triangular, that means that T is diagonal. We simply have to prove
that the diagonal elements of T = diag(t11, . . . , tnn) are real. Let Q =

[
q1, . . . , qn

]
. Then

Aqk = QkTek = tkkqk thus qk is an eigenvector of A with eigenvalue tkk. Now ⟨qk, Aqk⟩ = tkk
and ⟨qk, Aqk⟩ = ⟨A∗qk, qk⟩ = ⟨Aqk, qk⟩ = ⟨qk, Aqk⟩∗, thus tkk is real.

12 CHAPTER 1. REMINDERS ON MATRIX ANALYSIS

From the eigenvalue decomposition, by unitary invariance of the 2-norm, we have that

∥A∥2 = ∥QΛQ∗∥2 = sup
x∈Cn

∥QΛQ∗x∥2
∥x∥2

= sup
x∈Cn

∥ΛQ∗x∥2
∥Q∗x∥2

≤ sup
x∈Cn

(∑n
i=1 |λixi|2∑n
i=1 |xi|2

)
≤ |λmax|,

where λmax is the largest eigenvalue of A in absolute value.
This means that the condition number of a hermitian matrix A is given by

cond2(A) =
|λmax|
|λmin|

where λmax, respectively λmin, is the largest eigenvalue, respectively the smallest eigenvalue,
in absolute value of A.

Proposition 1.12 (Courant-Fischer principle). Let A ∈ Cn×n be a hermitian matrix. Let
λ1 ≤ · · · ≤ λn be its eigenvalues. Then for each 1 ≤ k ≤ n, we have

λk = min
S⊂Cn

dim S=k

max
x∈S,x̸=0

x∗Ax

∥x∥22
= max

S⊂Cn

dim S=n+1−k

min
x∈S,x̸=0

x∗Ax

∥x∥22
.

Proof. Let (qj)1≤j≤n be the eigenvectors associated to (λj)1≤j≤n. Let 1 ≤ k ≤ n and S ⊂
Cn be a subspace of dimension k. Since dimSpan(qk, . . . , qn) = n − k + 1, by dimension
counting, we have that S ∩ Span(qk, . . . , qn) is a subspace of dimension at least 1. Let x ∈
S ∩ Span(qk, . . . , qn), x ̸= 0. Then

sup
y∈S

y∗Ay

∥y∥22
≥ x∗Ax

∥x∥22
≥

∑n
j=k λj |xj |2∑n
j=k |xj |2

≥ λk.

Thus we have
inf

S⊂Cn

dim S=k

sup
x∈S,x̸=0

x∗Ax

∥x∥22
≥ λk.

Taking S∗ = Span(q1, . . . , qk), we have that supx∈S∗
x∗Ax
∥x∥22

= λk, thus the infinimum and the
supremum are attained and

λk = min
S⊂Cn

dim S=k

max
x∈S,x̸=0

x∗Ax

∥x∥22
.

For the second equality, the previous result is applied to the matrix −A, noticing that −λk is
the n− k + 1 smallest eigenvalue of −A:

−λk = min
S⊂Cn

dim S=n−k+1

max
x∈S,x̸=0

−x∗Ax

∥x∥22

= min
S⊂Cn

dim S=n−k+1

(
− min

x∈S,x̸=0

x∗Ax

∥x∥22

)
= − max

S⊂Cn

dim S=n−k+1

min
x∈S,x̸=0

x∗Ax

∥x∥22
,

thus the result.

1.3. MATRIX FACTORISATIONS 13

For the smallest eigenvalue, this criterion simplifies to

λ1 = min
x∈Cn,x ̸=0

x∗Ax

∥x∥22
,

and likewise for the largest eigenvalue

λn = max
x∈Cn,x ̸=0

x∗Ax

∥x∥22
.

1.3.3 Singular value decomposition

Theorem 1.13 (Singular value decomposition). Let A ∈ Cm×n. Then there exist two unitary
matrices U ∈ Cm×m, V ∈ Cn×n and a diagonal matrix Σ = Diag(σ1, . . . , σr, 0, . . . , 0) ∈ Cm×n

with σ1 ≥ · · · ≥ σr > 0 such that A = UΣV ∗.
The positive scalars (σi)1≤i≤r are called the singular values of A. The vectors (ui)1≤i≤m,

resp. (vi)1≤i≤n are called the left singular vectors, resp. the right singular vectors.

Any matrix, not necessarily square, has a singular value decomposition (SVD). The SVD
is thus a powerful tool to analyse the properties of a matrix.

The SVD of A can be derived from the eigenvalue decomposition of the matrices AA∗ and
AA∗. Indeed, if A = UΣV ∗ is the SVD of A, then A∗ = V ΣU∗ so using that U and V are
unitary matrices, we have

AA∗ = UΣΣ∗U∗ = U


σ2
1

. . .
σ2
r

0
. . .

U∗, A∗A = V Σ∗ΣV ∗ = V


σ2
1

. . .
σ2
r

0
. . .

V ∗.

The singular values of A are simply the eigenvalues of the matrices AA∗ and A∗A and the
unitary matrices U and V the corresponding orthonormal eigenvectors.

Using the relationship between the singular values of A and the eigenvalues of A∗A, we
can give a variational characterisation of the singular values.

Proposition 1.14. Let A ∈ Cn×n and σ1 ≥ · · · ≥ σr > 0 its singular values. Then for each
1 ≤ k ≤ r, we have

σk = max
S⊂Cn

dimS=k

min
x∈S

∥Ax∥2
∥x∥2

. (1.5)

Proof. This directly follows from the Courant-Fischer principle (Proposition 1.12). Noticing
that the eigenvalues and the singular values are labelled in an opposite order, and that σ2

k is
an eigenvalue of A∗A, we have that

σ2
k = max

S⊂Cn

dim S=k

min
x∈S,x̸=0

x∗A∗Ax

∥x∥22
= max

S⊂Cn

dim S=k

min
x∈S,x̸=0

∥Ax∥2

∥x∥22
.

14 CHAPTER 1. REMINDERS ON MATRIX ANALYSIS

Remark 1.15. From the proposition above, we deduce that the largest singular value σ1 of a
matrix A is equal to the induced 2-norm of the matrix A.

The SVD enables to write any matrix as a sum of rank 1 matrices.

Proposition 1.16. Let A ∈ Cm×n. There are orthonormal vectors (ui)1≤i≤r ∈ Cm, (vj)1≤j≤r ∈
Cn and (σi)1≤i≤r ∈ (0,∞) such that

A =

r∑
i=1

σiuiv
∗
i .

The number of singular values hence gives the rank of the matrix.

Proof. It is a consequence of the SVD. Let (U,Σ, V) be an SVD of A, with Σ = Diag(σ1, . . . , σr, 0, . . . , 0) ∈
Cm×n with σ1 ≥ · · · ≥ σr > 0. Decompose U and V as

U =
[
Ur Ũr

]
, V =

[
Vr Ṽr

]
,

where Ur ∈ Cm×r, Ũr ∈ Cm×(m−r), Vr ∈ Cn×r and Ṽr ∈ Cn×(n−r). Let Σr = Diag(σ1, . . . , σr) ∈
Cr×r. Then we have

A = UΣV ∗ =
[
Ur Ũr

] [Σr 0
0 0

] [
V ∗
r

Ṽ ∗
r

]
= UrΣrV

∗
r .

The proof follows by taking
[
u1, . . . , ur

]
= Ur and

[
v1, . . . , vr

]
= Vr.

Remark 1.17. The SVD contains redundant information on the entries in the matrix, hence it
is often enough to consider the thin SVD (Ur,Σr, Vr) such that Ur ∈ Cm×r, Σr = Diag(σ1, . . . , σr) ∈
Cr×r, σ1 ≥ · · · ≥ σr > 0, Vr ∈ Cn×r and A = UrΣrV

∗
r .

From the SVD, it is possible to read the information on the range and the kernel of the
matrix.

Proposition 1.18. Let (U,Σ, V) be a SVD of A, where Σ = Diag(σ1, . . . , σr, 0, . . . , 0) ∈ Cm×n

with σ1 ≥ · · · ≥ σr > 0. Let
[
u1, . . . , um

]
= U and

[
v1, . . . , vn

]
= V . Then Ker(A) =

Span(vr+1, . . . , vn) and Ran(A) = Span(u1, . . . , ur).

Proof. From Proposition 1.16, we directly have that Ran(A) = Span(u1, . . . , ur). Since
(ui)1≤i≤r is a free family, we have that Af = 0 if and only if ⟨f, vk⟩ = 0 for all r+ 1 ≤ k ≤ n,
thus f ∈ Span(vr+1, . . . , vn).

Finally, an important property of the SVD is its relationship to the best low-rank approx-
imation of a matrix.

Theorem 1.19 (Best low-rank approximation of a matrix). Let A ∈ Cm×n be a matrix and
(U,Σ, V ∗) an SVD of A. The best rank-r̃ of A in the induced 2-norm is given by

Ar̃ = Ur̃Σr̃V
∗
r̃ =

r̃∑
k=1

σkukv
∗
k, (1.6)

where Ur̃ =
[
u1, . . . , ur̃

]
∈ Cm×r̃, Σr̃ = Diag(σ1, . . . , σr̃) ∈ Cr̃×r̃ and Vr̃ =

[
v1, . . . , vr̃

]
∈ Cn×r̃

are the respective truncations of U , Σ and V . The error is given by

min
Rank Â=r̃

∥A− Â∥2 = ∥A−Ar̃∥2 = σr̃+1. (1.7)

The best approximation is unique if σr̃ > σr̃+1.

1.3. MATRIX FACTORISATIONS 15

Proof. It is straightforward to check that ∥A− Ar̃∥2 =
∥∥∑

j≥r̃+1 sjujv
∗
j

∥∥
2
= σr̃+1. Moreover

for a rank-r̃ matrix Ãr̃, by definition, there is a normalised vector x ∈ Span(v1, . . . , vr̃+1) such
that Ãr̃x = 0. Thus

∥A− Ãr̃∥2 ≥ ∥(A− Ãr̃)x∥2 ≥ ∥Ax∥2 ≥ σr̃+1.

Remark 1.20. We also have the same result in the Frobenius norm, where the best rank-r̃
approximation is given by (1.6). The error is however different, in that case we have that

min
Rank Â=r̃

∥A− Â∥F = ∥A−Ar̃∥F =

√ ∑
j≥r̃+1

σ2
j . (1.8)

If the singular values of a given matrix decay “fast”3, a good approximation of the matrix
can be obtained by truncating its SVD to small r. This means that an accurate representation
of the matrix A can be obtained by storing the vectors (ui)1≤i≤r̃ ∈ Cm, (vi)1≤i≤r̃ ∈ Cn and the
scalars (σi)1≤i≤r̃. This requires a storage of (m+ n+ 1)r̃ numbers which can be considerably
smaller than mn if r̃ ≪ m,n.

The SVD is a tool that is widely used in reduced modelling or in statistics, where it is
known as the principal component analysis.

3where the notion of fast decay depends on the application

16 CHAPTER 1. REMINDERS ON MATRIX ANALYSIS

Chapter 2

Direct linear solvers

2.1 Introduction

A linear system is a collection of m linear equations involving n unknowns, with n,m ∈ N,
taking the form

n∑
k=1

aj,k xk = bj ∀j = 1 . . .m. (2.1)

In these equations x = (xk)
n
k=1 is the unknown vector, the aj,k are the entries (or coefficients)

of the matrix of the linear system, and b = (bj)
m
j=1 is the right hand side. In what follows the

matrix of the linear system will be denoted by A = (aj,k), so that this linear system rewrites
as

Ax = b. (2.2)

In this course we will only consider invertible linear systems, which correspond to the situations
where the matrix A admits an inverse denoted by A−1. According to the rank-nullity theorem,
a consequence of this assumption is that linear systems are square m = n so that the matrix
A shall admit as many rows as columns.

Effective solution methods for problems of the form (2.1) are called linear solvers. There exists
essentially two families of linear solvers

• Direct solvers where the solution x is computed in a finite (but potentially large)
number of operations.

• Iterative solvers where the linear system is reformulated as a fixed point problem
x = Φ(x). The solution x is then approximated by means of an algorithm of the form
x(p+1) = Φ(x(p)).

In this chapter we will focus on direct solvers. Iterative solvers are the subject of subsequent
chapters of this course.

17

18 CHAPTER 2. DIRECT LINEAR SOLVERS

2.2 Triangular systems

First let us consider the case of a lower triangular linear system, i.e. when aj,k = 0 for j < k.
In this case the matrix A admits the form

A =


a1,1 0 · · · 0

a2,1 a2,2
. . .

...
... ∗ . . . 0

an,1 an,2 · · · an,n


The algorithm to solve the problem Ax = b, called the forward substitution method, is quite
natural. One first observes that the j-th row (j-th equation) can be re-written

xj =
1

aj,j

(
bj −

j−1∑
k=1

aj,kxk
)

(2.3)

From this identity, the value of xj is deduced from the values of xj−1, xj−2, . . . x1. One thus
starts with the first row that writes x1 = b1/a1,1, then x2, x3, . . . xn are successively obtained
by means of the reccurence relations (2.3).

Case of an upper triangular system In the case of an upper triangular system, that is
when aj,k = 0 for j > k, the solution principle is the same. This time the method is called
backward substitution method. The procedure starts from the last row, then the following
formula is applied

xj =
1

aj,j

(
bj −

n∑
k=j+1

aj,kxk
)

(2.4)

Algorithmic complexity Let us examine the number of operations required for the for-
ward substitution method with respect to n, when solving a lower triangular system. If we
do not make any particular assumption on the matrix A, the solution procedure that we have
just discussed requires

• n divisions,

• n− 1 substrations,

•
∑n

i=2

∑i−1
j=1 1 =

∑n
i=2(i− 1) = n(n− 1)/2 multiplications,

•
∑n

i=3

∑i−2
j=1 1 =

∑n
i=2(i− 2) = (n− 1)(n− 2)/2 additions.

This leads to a total cost of n + (n − 1) + n(n − 1)/2 + (n − 1)(n − 2)/2 = n2 elementary
operations (“floating point operation” = flop). The algorithm that we have just described is
thus said to admit an algorithmic complexity of O(n2).

If we assume that the matrix A admits only O(1) nonzero term in each row (for example if it
has a band structure with a band of fixed width), then the solution to this triangular system
only costs O(n), which is the cost of a matrix-vector product.

2.3. GAUSSIAN ELIMINATION 19

2.3 Gaussian elimination

We come back to the case of an arbitrary linear system. The gaussian elimination method
consists in reducing the initial linear system to an equivalent upper triangular system (obvi-
ously, with right hand side modified accordingly). In the sequel ej , j = 1 . . . n shall refer to
the canonical basis of Cn×n.

We know that Ax = b ⇐⇒ L(1)Ax = L(1)b if the matrix L(1) ∈ Cn×n is invertible. The
matrix of the transformed linear system takes the form A(1) := L(1)A = (a

(1)
j,k)j,k=1...n ∈ Cn×n,

and b(1) := L(1)b. Let us choose L(1) so as to make sure that a
(1)
j,1 = 0 for j = 2, . . . n i.e. so

that A(1) takes the (block lower triangular) form

A(1) =


a
(1)
1,1 ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗


It suffices to choose

L(1) := id−ℓ1 · e⊤1
where ℓ⊤1 := (0, a2,1/a1,1, . . . , an,1/a1,1).

Note that ℓ1 · e⊤1 is indeed a rank 1 matrix of size n×n not to be confused with e⊤1 · ℓ1 (which
is a simple scalar value). Besides we have e⊤1 · ℓ1 = 0. Let us verify that L(1) is invertible. We
have (id−ℓ1 · e⊤1) · (id+ℓ1 · e⊤1) = id−(ℓ1 · e⊤1)2 = id−ℓ1 · (e⊤1 · ℓ1) · e⊤1 = id. We have just
proved that

(L(1))−1 = id+ℓ1 · e⊤1 .

Note that e⊤1 · A(1) = e⊤1 · A. To conclude, note the particular role played by the coefficient
a1,1 in this procedure. This coefficient is called first pivot. For the matrix L(1) to be properly
defined, this pivot needs to be non-zero.

Second iteration We can reiterate the procedure that we have just described. Indeed we
have A(1)x = b(1) ⇐⇒ L(2)A(1)x = L(2)b(1) provided that L(2) is invertible. Set A(2) =

L(2)A(1) = (L(2) · L(1)) · A = (a
(2)
j,k)j,k=1...n and b(2) = L(2)b(1). We will choose L(2) so as to

make sure that A(2) takes the form

A(2) =

[
U2 ∗
0 ∗

]
where U2 =

[
a
(2)
1,1 ∗
0 a

(2)
2,2

]

Here the matrix U2 is of size 2 × 2. To obtain the form above, it suffices then to define L(2)

as a lower triangular matrix given by

L(2) := id−ℓ2 · e⊤2
avec ℓ⊤2 = (0, 0, a

(1)
3,2/a

(1)
2,2, . . . , a

(1)
n,2/a

(1)
2,2).

Again the matrix L(2) is properly defined provided that the second pivot verifies a(1)2,2 ̸= 0 and,
in this case, L(2) is invertible with inverse given by (L(2))−1 = id+ℓ2 · e⊤2 . Then we have
e⊤1 A

(2) = e⊤1 A
(1) = e⊤1 A (in particular a

(2)
1,1 = a

(1)
1,1 = a1,1), and e⊤2 A

(2) = e⊤2 A
(1).

20 CHAPTER 2. DIRECT LINEAR SOLVERS

General iteration We can generalize the procedure above up to any order. Assume that
A(p−1) has been defined for p = 2 . . . n, and that it is upper triangular on its p−1 first columns
i.e. it admits the following form

A(p−1) =

[
Up−1 ∗
0 ∗

]

where Up−1 is an upper triangular matrix of size (p − 1) × (p − 1). We then define A(p) =

L(p) · A(p−1) = (a
(p)
j,k)j,k=1...n and b(p) = L(p)b(p−1), where L(p) ∈ Cn×n is a lower triangular

matrix given by the formula

L(p) := id−ℓp · e⊤p
avec ℓ⊤p = (0, . . . , 0, a

(p−1)
p+1,p/a

(p−1)
p,p , . . . , a

(p−1)
n,p /a

(p−1)
p,p).

(2.5)

A matrix of the form (2.5) is called a Gauss transformation. In the definition of ℓp, the first p
coefficients are zero, which writes e⊤j ·ℓp = 0∀j = 1 . . . p. This implies e⊤j L(p) = e⊤j ,∀j = 1 . . . p.
This construction of A(p) hence guarantees that e⊤j A

(p) = e⊤j L(p)A(p−1) = e⊤j A
(p−1) for all

j = 1 . . . p and, reccursively, we deduce that

e⊤j A
(p) = e⊤j A

(j−1) ∀j = 1 . . . p

setting A(0) := A. Here again, the matrix L(p) is properly defined only if the p-th pivot satisfies
a
(p−1)
p,p ̸= 0, and its inverse is given by (L(p))−1 = id+ℓp · e⊤p . To conclude, the construction

above garantees that A(p) admits the form

A(p) =

[
Up ⋆
0 ⋆

]
where Up is an upper triangular matrix of size p×p. From what precedes, we see that the first
p rows and columns remain unchanged when transforming the system from A(p−1) to A(p).
We obtain the following formulas expressing a

(p)
j,k with respect to a

(p−1)
j,k ,

a
(p)
j,k = a

(p−1)
j,k for 1 ≤ j ≤ p or 1 ≤ k < p

a
(p)
j,k = 0 if p < j ≤ n and k = p

a
(p)
j,k = a

(p−1)
j,k − a

(p−1)
j,p a

(p−1)
p,k /a

(p−1)
p,p if p < j ≤ n and p < k ≤ n

(2.6)

Conclusion of the algorithm The gaussian elimination algorithm terminates whenever
p = n − 1, since the matrix A(n−1) is then upper triangular. We have obtained that Ax =
b ⇐⇒ A(n−1)x = b(n−1). The later system being upper triangular (by construction. . .), it
can be solved by a backward substitution algorithm as explained in the previous section 2.2.

Algorithmic complexity One can show that the gaussian elimination algorithm requires
2n3/3 + n2/3− n operations (this is left as an exercise).

2.4. LU DECOMPOSITION 21

Remarks on the pivots The gaussian elimination algorithm is well defined provided that
a
(p−1)
p,p ̸= 0 for all p i.e. no pivot is equal to zero. There are classes of matrices for which this

condition is systematically fulfilled. Here are three examples:

• symmetric positive definite matrices,

• row-wise diagonally dominant matrices: |aj,j | >
∑

k ̸=j |aj,k| ∀j = 1 . . . n,

• column-wise diagonally dominant matrices: |aj,j | >
∑

k ̸=j |ak,j | ∀j = 1 . . . n.

2.4 LU decomposition

The gaussian elimination method leads to a factorisation of the matrix under the form A = L·U
where L is lower triangular with Lj,j = 1, j = 1 . . . n and U is upper triangular. Indeed, let us
start by setting U = A(n−1) which is the matrix obtained after the n− 1-th step of the Gauss
method. We thus have L(n−1)L(n−2) · · · L(1)A = U ⇐⇒ A = L ·U with

L := (L(1))−1(L(2))−1 · · · (L(n−1))−1

Let us study in more details the matrix L. It appears in factorised form. We will develop this
product, taking account of the elementary property e⊤j ℓp = 0 for j = 1 . . . p. As a particular
case of this property, we see that e⊤1 ℓ2 = 0, which leads to the conclusion that

(L(1))−1(L(2))−1 = (id+ℓ1e
⊤
1)(id+ℓ2e

⊤
2)

= id+ℓ1e
⊤
1 + ℓ2e

⊤
2 + ℓ1(e

⊤
1 ℓ2)e

⊤
2

= id+ℓ1e
⊤
1 + ℓ2e

⊤
2

We then proceed by induction on p to show that (L(1))−1(L(2))−1 · · · (Lp)−1 = id+
∑p

j=1 ℓje
⊤
j .

We have just proved that this property holds for p = 1. Assume that it holds for p, and let
us prove that it holds for p+ 1 as well. We have

(L(1))−1(L(2))−1 · · · (L(p))−1(L(p+1))−1 = (id+

p∑
j=1

ℓje
⊤
j)(id+ℓp+1e

⊤
p+1)

= id+(

p∑
j=1

ℓje
⊤
j) + ℓp+1e

⊤
p+1 + (

p∑
j=1

ℓje
⊤
j)ℓp+1e

⊤
p+1

= id+

p+1∑
j=1

ℓje
⊤
j + (

p∑
j=1

ℓje
⊤
j)ℓp+1e

⊤
p+1

= id+

p+1∑
j=1

ℓje
⊤
j +

p∑
j=1

ℓj(e
⊤
j ℓp+1)e

⊤
p+1

Since e⊤j ℓp+1 = 0 for j = 1 . . . p, the last term in the right hand side above is zero, so that the
property that we want to prove holds for p+ 1. We finally obtain, for p = n− 1,

L = id+
n−1∑
j=1

ℓje
⊤
j

22 CHAPTER 2. DIRECT LINEAR SOLVERS

Let us examine the j-th column of this matrix. We have L · ej = ej + ℓj , with (ej + ℓj)
⊤ =

(0, . . . , 0, 1, a
(j−1)
j+1,j/a

(j−1)
j,j , . . . , a

(j−1)
n,j /a

(j−1)
j,j). We see that L is indeed lower triangular, with 1’s

on the diagonal, and the expression that we have just obtained for its columns suggests that
this matrix should be assembled on-the-fly during the gaussian elimination algorithm.

2.5 Factorisation algorithm

Let us now examine the algorithmic details of an LU decomposition. Before going into the
description of the algorithm itself, we introduce a few simple notations. If J and K are two
subsets of [[1, n]] := {1, . . . n}, we will denote by AJ,K ∈ C|J|×|K| the submatrix obtained out
of A by extracting the columns k ∈ K and the rows j ∈ J (here we denote |J| the cardinal of
J, and accordingly for |K|). For a j ∈ [[1, n]] and a subset K ⊂ [[1, n]], we denote Aj,K instead
of A{j},K and, similarly, for k ∈ [[1, n]] and J ⊂ [[1, n]] we will denote AJ,k instead of AJ,{k}.

As suggested by the algorithm of the gaussian elimination described above, an LU decompo-
sition method involves n− 1 for a square matrix A ∈ Cn×n. Iteration p consists in an update
of the matrix A(p−1) to obtain the matrix A(p). On the theoretical side, this update takes the
form of a left-multiplication by the matrix L(p) := id−ℓp · e⊤p , but this is not the actual way
this update takes place in practice: this would be unecessarily costly. Here are a few simple
observations concerning this update:

• it does not modify the rows 1, . . . , p

• it does not modify the columns 1, . . . , p− 1

• in column p, it cancels out the elements a
(p−1)
j,p for j = p+ 1, . . . n

As a consequence, to change A(p−1) into A(p), it suffices to modify the block A
(p−1)
J,J for

J = [[p+1, n]]. Besides, the matrix L(p) is entirely determined by ℓp. These elementary remarks
together with §2.3, lead to Algorithm 2.1 that follows

Algorithm 2.1
function lu_naive(A)

L = id
A(0) = A
for p = 1 . . . n− 1 do

J = [[p+ 1, n]]

LJ,p = A
(p−1)
J,p /A

(p−1)
p,p

A
(p)
J,J = A

(p−1)
J,J − LJ,pA

(p−1)
p,J

end for
U = A(n−1)

return L,U
end function

In fact Algorithm 2.1 makes use of many unnecessary intermediate variables. One may
store L (resp. U) in the lower (resp. upper) triangular part of a single matrix T ∈ Cn×n.

2.6. PARTIAL PIVOTING 23

During this construction, it is also possible to store the matrices A(p) inside T. This leads to
Algorithm 2.2 that only involves a single additional matrix.

Once the LU decomposition of the matrix A is available and stored in the matrix T, we
can solve the linear system Ax = b by means of the successive application of a backward
and a forward substitution method based on the upper and lower triangular parts of T (the
diagonal coefficients of the lower triangular system must equal 1 hence do not need to be
stored). The effective solution of a linear system making use of the a priori knowledge of the
LU decomposition then takes the form of Algorithm 2.3 below.

Algorithm 2.2
function lu_decompose(A)

T = A
for p = 1 . . . n− 1 do

J = [[p+ 1, n]]
TJ,p = TJ,p/Tp,p

TJ,J = TJ,J − TJ,pTp,J

end for
return T

end function

Algorithm 2.3
function lu_solve(A,b)

T = lu_decompose(A)
//L solve
for j = 1 . . . n do

vj = bj
for k = 1 . . . j − 1 do

vj = vj − Tj,kvk
end for

end for
//U solve
for p = 1 . . . n do

j = n− p+ 1
uj = vj
for k = j + 1 . . . n do

uj = uj − Tj,kuk
end for
uj = uj/Tj,j

end for
return u

end function

2.6 Partial pivoting

As we saw, the gaussian elimination algorithm stops if one of the pivots is zero i.e. a(q−1)
q,q = 0.

One way to circumvent this issue relies on a so-called partial pivoting strategy. It consists in
a preliminary step taking place at each iteration q, where the rows q and r are swapped with
r chosen so that

|a(q−1)
r,q | = max

j=q...n
|a(q−1)

j,q | (2.7)

This is equivalent to a left multiplication of the matrix Aq−1 by a permutation matrix Pq

defined by: Pq · eq = er, Pq · er = eq and Pq · ej = ej if j ̸= q, r. It is important to note
that (Pq)

2 = id and that P⊤
q = Pq. In addition observe that the coefficient a

(q−1)
r,q in (2.7)

necessarily satisfies a
(q−1)
r,q ̸= 0 otherwise the matrix A would not be invertible.

24 CHAPTER 2. DIRECT LINEAR SOLVERS

With the pivoting strategy described above, the result of n−1 iterations of the gaussian elim-
ination algorithm writes L(n−1)Pn−1 · · ·P2L(1)P1 ·A = U. This can be rewritten equivalently
as follows:

A = P1(L(1))−1P2 · · ·Pn−1(L(n−1))−1 ·U

⇐⇒ PA = P · P1(L(1))−1P2 · · ·Pn−1(L(n−1))−1 ·U
with P = Pn−1Pn−2 · · ·P1

⇐⇒ PA = T1 · T2 · · · Tn−1 ·U
where Tq = Pn−1 · · ·Pq+1 · (L(q))−1 · Pq+1 · · ·Pn−1

In the calculation above, we have considered that Tn−1 = (L(n−1))−1. Let us check that the
matrices Tq are lower triangular. Recall that (L(q))−1 = id+ℓq · e⊤q , where ℓq ∈ Cn×n, verifies
e⊤j · ℓq = 0 for j = 1 . . . q. As a consequence, we have

Tq = Pn−1 · · ·Pq+1 · (id+ℓq · e⊤q) · Pq+1 · · ·Pn−1

= id+(Pn−1 · · ·Pq+1 · ℓq) · (e⊤q · Pq+1 · · ·Pn−1)

= id+(Pn−1 · · ·Pq+1 · ℓq) · (Pn−1 · · ·Pq+1 · eq)⊤

= id+ℓ′q · e⊤q with ℓ′q := Pn−1 · · ·Pq+1 · ℓq

In the last step of the calculation above, we have used the fact that Pqej = ej whenever
q > j. Using this same property, we also see that, for all j = 1 . . . q, we have e⊤j · ℓ′q =

e⊤j · Pn−1 · · ·Pq+1 · ℓq = (Pq+1 · · ·Pn−1 · ej)⊤ · ℓq = e⊤j · ℓq = 0. This proves that Tq is lower
triangular. Setting this time L = T1 · T2 · · · Tn−1, we have obtained

P ·A = L ·U

where L is lower triangular, and U is upper triangular. Such a decomposition holds as soon
as A is invertible.

Algorithm 2.4
function lu_pivot(A)

T = A, P = id
for q = 1 . . . n− 1 do

//pivoting
r = argmaxj=q,...n|Tj,q|
P = τ(q, r) · P, T = τ(q, r) · T
//gaussian elimination
J = [[q + 1, n]]
TJ,q = TJ,q/Tq,q

TJ,J = TJ,J − TJ,qTq,J

end for
return T,P

end function

A modified version of Algorithm 2.2 taking account of the row-wise partial pivoting is given

2.7. THEORETICAL RESULTS REGARDING THE LU FACTORISATION 25

in Algorithm 2.4 above. In this algorithm τ(q, r) ∈ Cn×n is the transposition matrix such
that τ(q, r)ek = ek if k ̸= q, r, τ(q, r)eq = er and τ(q, r)er = eq. Obviously, to compute
τ(q, r) ·P and τ(q, r) ·T, no need to perform a full matrix-matrix product (a costly operation
with O(n3) algorithmic complexity a priori); it suffices to swap rows q and r of matrices P and
T (a fast operation with O(n) algorithmic complexity). At the end of the day, the solution
algorithm proceeds as in Algorithm 2.3, applying the permutation P on the right hand side
as a preliminary step.

The only computational overhead comes from comparing the pivots in the columns at each
step of the LU factorisation. Since there are 1 + 2 + · · · + n − 1 = (n−1)n

2 = O(n2) compar-
isons, this additional cost is negligeable with respect to the total cost of computing the LU
factorisation.

Remark 2.1. In practice, the partial pivoting strategy is sufficient to accurately solve linear
systems, although there are theoretical examples that show that it does not guarantee that the
LU factors are not growing exponentially fast (see the exercise on the Wilkinson matrix). In
that case, more elaborate or costly pivoting strategies can be considered. The interested reader
may refer to [GL13, Chapter 3.4] or [Hig02, Chapter 9] for a more thorough discussion on
that topic.

2.7 Theoretical results regarding the LU factorisation

Apart from the construction and practical details of the LU decomposition that we have
presented, theoretical questions naturally arise concerning the existence or uniqueness of such
a factorisation.

Theorem 2.2. Given an invertible matrix A ∈ Cn×n, we have det(AJ,J) ̸= 0 for J = [[1, j]] and
for all j = 1 . . . n− 1 if and only if there exists a unique pair L,U ∈ Cn×n satisfying A = LU
with U upper triangular and invertible and L lower triangular with Lj,j = 1∀j = 1 . . . n.

The pair (L,U) of matrices is called the LU factorisation of A.

Proof. The converse is straightforward to check, as U invertible means that its diagonal entries
are non zero, hence AJ,J = LJ,JUJ,J with LJ,J = (Lik)1≤i,k≤j and UJ,J = (Uik)1≤i,k≤j is also
invertible.

For the direct implication, we first check the uniqueness. Let (L,U) and (L̃, Ũ) be two
LU factorisations of A. Then A = LU = L̃Ũ so L̃−1L = ŨU−1. The left hand side is a lower
triangular matrix, with 1 on the diagonal, whereas the right hand side is an upper triangular
matrix. This means that L̃−1L = ŨU−1 = idn, thus L = L̃ and U = Ũ .

For the existence, we proceed by induction on the dimension n. The result for n = 1 is
obvious. Assume that the result holds for A ∈ Cm×m satisfying the assumption in the theorem
with m = 1 . . . n, and let us prove that this result still holds A ∈ C(n+1)×(n+1) invertible.

Suppose that A has a LU factorisation (L,U). Now let us set B := AJ,J for J = [[1, n]], so
that

A =

[
B a
b∗ α

]
(2.8)

where a, b ∈ Cn and α ∈ C. By the induction hypothesis, there is existence of the factorisation
B = L̃Ũ. As a consequence we have the decomposition A = LU if and only if there exist

26 CHAPTER 2. DIRECT LINEAR SOLVERS

u, v ∈ Cn and β ∈ C \ {0} such that

L =

[
L̃ 0
v∗ 1

]
, U =

[
Ũ u
0 β

]
and

L̃u = a

Ũ∗v = b
β + v∗u = α

(2.9)

Since L̃ and Ũ are invertible, we have the existence of u, v, β solution to (2.9). It remains to
check that U is indeed invertible, but by construction, L is invertible, and by assumption A
is invertible, so U = L−1A is invertible.

The criterion on the det(AJ,J)’s mentionned above is not very easy to verify in practice.
However there exist certain classes of matrices for which this criterium is systematically satis-
fied. This is the case of diagonally dominant matrices. Recall that a matrix A = (aj,k) ∈ Cn×n

is said row-wise diagonally dominant if |aj,j | >
∑

k ̸=j |aj,k| ∀j = 1 . . . n. Similarly it is said
column-wise diagonally dominant when |aj,j | >

∑
k ̸=j |ak,j | ∀j = 1 . . . n.

Proposition 2.3. If the matrix A ∈ Cn×n is either row-wise or column-wise diagonally dom-
inant, then it admits a unique LU-decomposition.

Proof. Let us assume row-wise diagonal dominance, since the case of a column-wise diago-
nal dominance proceeds very similarly. According to Theorem 2.2, it suffices to show that
det(AJ,J) ̸= 0 for J = [[1, k]] for all k = 1 . . . n. It appears clear that if A is row-wise diago-
nally dominant, this is also the case for AJ,J. Hence there remains to verify that a row-wise
diagonally dominant matrix is necessarily invertible.

Let us proceed by contradiction and consider a row-wise diagonally dominant matrix B =
(bj,k) ∈ Cn×n such that Bu = 0 for a certain u = (uj) ∈ Cn \ {0}. Let p ∈ {1 . . . n} such that
|up| = maxj=1...n |uj |. Then we have 0 = bp,pup,p +

∑
j ̸=p bp,juj and thus

|bp,pup,p| = |
∑
j ̸=p

bp,juj | ≤
∑
j ̸=p

|bp,j | max
j=1...n

|uj | ≤
∑
j ̸=p

|bp,j ||up,p|

which contradicts the diagonal dominance.

The next result shows that if the matrix A has a band structure with a certain width, then
each of the factors of the LU decomposition admits the same band structure.

Proposition 2.4. Let A ∈ Cn×n a matrix admitting a unique LU factorisation. Let us
assume in addition that there exists p ≥ 0 such that Aj,k = 0 if |j−k| > p. Then we also have
Lj,k = Uj,k = 0 for |j − k| > p.

Proof. Again we proceed by induction on the band width, and assume that the result holds
for all matrices uniquely LU-factorisable with a band width of m with 1 ≤ m ≤ n. We pick
a matrix A ∈ C(n+1)×(n+1) satisfying the assumptions of the proposition we are seeking to
prove. Coming back to the notations of the proof of Theorem 2.2, we must in particular have
(2.9) with L̃j,k = Ũj,k = 0 whenever |j − k| > p according to the induction hypothesis.

Let us also take the notation u = (uj), v = (vj), a = (aj), b = (bj) for the vectors coming
into play in (2.9) and (2.8). To prove that L and U admit the same band structure, that is
Lj,k = Uj,k = 0 for |j − k| > p, there remains to verify that uj = vj = 0 for |j − n| > p ⇐⇒
j < n − p. We already know that aj = bj = 0 for j < n − p according to the band structure
satisfied by A. On the other hand L̃ and Ũ∗ are lower triangular, hence (L̃)−1 and (Ũ∗)−1 also,
and we have u = (L̃)−1a and v = (Ũ∗)−1b, which indeed implies uj = vj = 0 for j < n−p.

2.8. CHOLESKY FACTORISATION 27

2.8 Cholesky factorisation

Recall that a matrix A ∈ Cn×n is hermitian whenever A = A∗, and it is called positive when
x∗Ax ∈ (0,+∞) for all x ̸= 0. Finally, when it is positive, the matrix A is called definite if
x∗Ax = 0 ⇒ x = 0. In the case where the matrix A ∈ Cn×n is hermitian positive definite
(HPD), its LU-factorisation simplifies, and we can obtain simpler formulas.

Theorem 2.5. Let A = (aj,k)j,k=1...n ∈ Cn×n be hermitian positive definite. Then there exists
a lower triangular matrix H ∈ Cn×n whose diagonal terms are real, positive and such that the
following so-called Cholesky factorisation holds

A = HH∗.

Proof. As A is hermitian positive-definite, for all 1 ≤ j ≤ n, J = {1, . . . , j}, AJ,J is invertible,
hence A has a unique LU decomposition (L,U). Let D be the diagonal matrix of the diagonal
elements of U . Since A is invertible, U is invertible, so there is an upper triangular matrix Ũ
with entries equal to 1 on the diagonal such that U = DŨ . Then we have A = LDŨ . A is
hermitian, thus A∗ = Ũ∗D∗L∗. Since the LU decomposition is unique, we have that L = Ũ∗,
thus A = LDL∗. L−1AL−∗ is also hermitian positive-definite, since for any vector x ∈ Cn, we
have x∗L−1AL−∗x = (L−∗x)∗A(L−∗x) = 0 ⇒ L−∗x = 0 ⇒ x = 0. Thus the diagonal elements
of D are all real and positive. Take H = Ldiag(

√
d1, . . . ,

√
dn) where D = diag(d1, . . . , dn),

then A = HH∗.

An explicit algorithm can be proposed for the Cholesky factorisation. By directly express-
ing the matrix product A = HH∗, coefficient by coefficient, we obtain aj,j =

∑j
k=1 |hj,k|

2 and
aj,k =

∑k
p=1 hj,phk,p for k < j. From there we deduce the following formulas

hj,j = (aj,j −
∑j−1

k=1 |hj,k|
2)1/2,

hj,k = (aj,k −
∑k−1

p=1 hj,phk,p)/hk,k pour k < j.

The construction of the matrix H then proceeds for j growing from 1 to n and for k growing
from 1 to j. These formulas yield Algorithm 2.5.

Remark 2.6. The Cholesky factorisation is not the square root of the matrix in general. The
square root S of a hermitian positive-definite matrix A is a hermitian positive-definite matrix
satisfying A = S2. In the case where A is hermitian positive-definite, there is a link between
both matrices. Let H be the Cholesky factor of A, H = UΣV ∗ is a SVD of H, then S = UΣU∗

is a square root of A:

S2 = (UΣU∗)(UΣU∗) = (UΣV ∗)(V ∗ΣU) = HH∗ = A.

28 CHAPTER 2. DIRECT LINEAR SOLVERS

Algorithm 2.5
function cholesky(A)

H = 0
for j = 1 . . . n do

for k = 1 . . . j do
Hj,k = Aj,k

for p = 1 . . . k − 1 do
Hj,k = Hj,k −Hj,pHk,p

end for
if k < j then

Hj,k = Hj,k/Hk,k

else
Hj,j =

√
Hj,j

end if
end for

end for
return H

end function

Chapter 3

Stationary iterative methods

In this chapter, we are introducing iterative methods to solve the linear system

Ax∗ = b, (3.1)

where A ∈ Cn×n is a matrix assumed to be invertible, x∗ ∈ Cn is the vector of unknowns and
b ∈ Cn is the right-hand side vector.

The general idea of iterative methods is to define a sequence of vectors (x(k))k∈N such
that limx(k) = x∗. In this regard, there are two big families of iterative methods that can be
distinguished:

1. the stationary iterative methods where (x(k)) is defined by

x(k+1) = Gx(k) + v,

where G ∈ Cn×n is some iteration matrix and v ∈ Cn;

2. Krylov subspace methods where for all n, x(k) ∈ Span0≤j≤k−1(A
jb).

The advantage of using an iterative solver instead of a Gaussian elimination process relies
on the following observation: the Gaussian elimination algorithm requires O(n3) operations
for a dense matrix in order to compute x∗. This quickly becomes untractable. The iterative
methods on the other hand only requires matrix-vector multiplication whose cost scales as
O(n2) for dense matrices and O(n) for sparse matrices. If the iterative method converges
quickly, an approximate solution can be computed using O(kn2) for a dense matrix (O(kn)
for a sparse matrix) with k ≪ n where k is the number of steps of the iterative method. With
an efficient iterative method, it is possible to gain a factor n in the resolution of the linear
system.

Remark 3.1. We say that a matrix A ∈ Cn×n is sparse if for each row of A, there are s ≪ n
nonzero elements. The matrix-vector product of with a sparse matrix scales as O(sn) instead
of n2 as for each 1 ≤ i ≤ n, we have

(Ax)i =

n∑
j=1

Aijxj =
∑

j such that Aij ̸=0

Aijxj ,

where the last term contains at most s nonzero terms. In terms of storage, it is not necessary
to store all the elements of the matrix, but only the nonzero ones. We thus also gain a factor
n.

29

30 CHAPTER 3. STATIONARY ITERATIVE METHODS

A typical example of a sparse matrix is the discrete Laplacian matrix which is tridiagonal,
hence it is sparse with s = 3. This type of matrices appear in graph theory, when the graph is
not well-connected or in differential equations, when the operators are discretised using finite
elements or finite differences.

There are several ways to store a sparse matrix, we will mention these two that are standard:

1. the COO format (COOrdinates): the matrix A is given as three vectors (I, J, V), each of
size nnz where nnz is the number of nonzero entries in A. For each 1 ≤ k ≤ nnz, we have
Vk = AIk,Jk , or said differently, the k-th entry of V corresponds to the coordinate (Ik, Jk)
in the matrix A. This format is easy to manipulate, but is not efficient for performing
matrix-vector multiplications, as the vectors (I, J) are not necessarily ordered. For the
matrix

A =


2 6 0 0
0 0 0 7
−1 13 0 0
0 −2 −4 0

 ,

an example of the COO format is given as

I =
[
1, 1, 2, 3, 3, 4, 4

]
, J =

[
1, 2, 4, 1, 2, 2, 3

]
, V =

[
2, 6, 7,−1, 13,−2,−4

]
.

2. the CSR format (Compressed Sparse Row): the matrix A ∈ Cn×n is given as three
vectors (row, col, val) where col, val have size nnz and row is of size n+ 1. In this case,
we have for each 1 ≤ k ≤ nnz, valk = Ai,colk where i is such that rowi ≤ k < rowi+1.
Compared to the COO format, the storage cost is reduced since the size row is usually
much smaller than nnz. Moreover, now that the entries are ordered, the matrix-vector
multiplication is much more efficient than in the COO format. For the example above,
the corresponding CSR format is given by

row =
[
1, 3, 4, 6, 8

]
, col =

[
1, 2, 4, 1, 2, 2, 3

]
, val =

[
2, 6, 7,−1, 13,−2,−4

]
.

The central question for iterative methods is the convergence and the speed of convergence
of these algorithms. We are first presenting historical iterative methods, that are rarely used
in practice but which give a good insight on these methods.

3.1 Principle of stationary iterative methods

The general framework of this type of methods is to define a splitting of the matrix A = M−N ,
where M,N ∈ Cn×n and define the stationary iterative method by{

x(0) ∈ Cn

Mx(k+1) = Nx(k) + b, k ≥ 1.
(3.2)

If the sequence (x(k)) converges to a vector x∞, then Mx∞ = Nx∞+ b hence Ax∞ = b. Thus
the limit solves the linear system (3.1).

To study the convergence of the sequence (x(k)), we see that Mx∗ = Nx∗ + b, so x(k) − x∗
satisfies

x(k+1) − x∗ = M−1Nx(k) −M−1b− x∗ = M−1N(x(k) − x∗). (3.3)

Hence the convergence of the sequence (x(k)) is governed by the properties of the matrix
M−1N , and in particular, as we will see in the next section, the spectral radius of M−1N .

3.1. PRINCIPLE OF STATIONARY ITERATIVE METHODS 31

3.1.1 Convergence of stationary iterative methods

Proposition 3.2. For any matrix A ∈ Cn×n and any ϵ > 0, there exists an induced norm
∥ ∥∗ over Cn×n such that

∥A∥∗ ≤ ϱ(A) + ϵ. (3.4)

We already know that for any induced matrix norm ∥ · ∥, we have that ϱ(A) ≤ ∥A∥. The
proposition above shows that there is a particular choice of vector norm, that depends on the
matrix such that the converse is true, up to a tolerance ϵ.

Proof. Consider a matrix A ∈ Cn×n. We have to propose an induced norm satisfying (3.4).
According to Proposition 1.10, there exists a unitary matrix Q ∈ Cn×n such that T := Q∗AQ
is upper triangular,

T =


t1,1 t1,2 · · · t1,n

0
. . .

...
...

.
...

0 · · · 0 tn,n

 .

Note that the entries tj,j , j = 1 . . . n are the eigenvalues of the matrix A. Given some δ > 0
that we shall choose a posteriori, set Dδ := diag(1, δ, . . . , δn−1) and define the matrix Tδ :=
D−1

δ Q−1AQDδ = (QDδ)
−1A(QDδ) = D−1

δ TDδ. Examining its values, we see that

Tδ =


t1,1 δt1,2 · · · δn−1t1,n

0
. . .

...
...

. δtn−1,n

0 · · · 0 tn,n

 .

The matrix above decomposes as Tδ = Λ + Rδ where Λ = diag(t1,1, . . . , tn,n) and Rδ is the
upper triangular part located strictly above the diagonal. According to Proposition 1.3, we
have limδ→0 ∥Rδ∥1 = 0. Given some ϵ, we can choose δ small enough to guarantee that
∥Rδ∥1 ≤ ϵ. In addition, one readily checks that ∥Λ∥1 = maxj=1...n |tj,j | = ϱ(A). With δ
chosen as indicated, we obtain ∥Tδ∥1 ≤ ϱ(A) + ϵ. Now set Qδ := QDδ and consider the norm
∥x∥∗ := ∥Q−1

δ x∥1. With the matrix norm ∥ ∥∗ induced by ∥ ∥∗, the matrix A then satisfies

∥A∥∗ = sup
x∈Cn\{0}

∥Ax∥∗
∥x∥∗

= sup
x∈Cn\{0}

∥Q−1
δ AQδx∥1
∥x∥1

= ∥Tδ∥1 ≤ ϱ(A) + ϵ.

Theorem 3.3 (Convergence of stationary iterative methods). Let A ∈ Cn×n be invertible, b ∈
Cn and x∗ = A−1b. The sequence (x(k))k≥0 defined by Equation (3.2) converges to x∗ for any
x(0) ∈ Cn if and only if ρ(M−1N) < 1, where ρ(M−1N) = max{|λ|, λ eigenvalue of M−1N}.

Proof. If ρ(M−1N) < 1 then there is an induced matrix norm ∥ · ∥∗ by a vector norm such
that ∥M−1N∥∗ < 1. Thus we have

∥x(k) − x∗∥∗ ≤ ∥M−1N(x(k−1) − x∗)∥∗ ≤ ∥M−1N∥∗∥x(k−1) − x∗∥∗ ≤ ∥M−1N∥k∗∥x(0) − x∗∥∗.

Thus limx(k) = x∗.
On the other hand if ρ(M−1N) ≥ 1 then there is an eigenvector y ∈ Cn of M−1N such

that ∥(M−1N)ky∥ = ρ(M−1N)k∥y∥ does not converge to 0 as k goes to infinity.

32 CHAPTER 3. STATIONARY ITERATIVE METHODS

It remains to choose the matrix M in a wise manner, such that at each step the inversion
of M has a cost comparable to a matrix-vector product.

3.2 Classical iterative methods

To define the methods in this section, we introduce the following notation D,E, F ∈ Cn×n

such that A = D − E − F with

D =


a11 0 . . . 0

0 a22
. . . 0

...
.

...
0 . . . 0 ann

 , −E =


0 0 . . . 0

a21 0
. . . 0

...
.

...
an1 . . . an,n−1 0

 , and −F =


0 a12 . . . a1n

0 0
. . .

...
...

. an−1,n

0 . . . 0 0

 .

3.2.1 Jacobi method

For the Jacobi method, we set M = D and N = E + F .
In that case, the i-th entry of the vector x(k) is given by

x
(k)
i =

bi −
∑

j ̸=i aijx
(k−1)
j

aii
.

The cost of one iteration in the Jacobi method consists in applying E+F which costs as O(n2)
for a dense matrix, and O(n) for a sparse matrix and inverting a diagonal matrix, which costs
n divisions. Thus overall, the cost of a Jacobi iteration, scales as O(n2) operations for dense
matrices and O(n) for sparse matrices.

Remark 3.4. Since the entries of x(k) only depend on x(k−1), its entries can be updated in
parallel.

We can ensure that the Jacobi method converges for the class of row-wise diagonally
dominant matrices.

Proposition 3.5. If A is row-wise diagonally dominant, i.e. for each 1 ≤ i ≤ n, |aii| >∑
j ̸=i |aij |, then the Jacobi method converges.

Proof. We simply need to check that the spectral radius ρ(M−1N) < 1 and use Theorem 3.3
to conclude on the convergence. For y ∈ Cn, we have

|(M−1Ny)i| =
∣∣∣∑
j ̸=i

aij
aii

yj

∣∣∣
< ∥y∥∞,

thus ∥M−1N∥∞ < 1, so ρ(M−1N) ≤ ∥M−1N∥∞ < 1.

3.2.2 Gauss-Seidel method

For the Gauss-Seidel method, we set M = D − E and N = F .
In terms of number of operations, the Gauss-Seidel algorithm requires the inversion of a

triangular system which scales as O(n2) if the matrix is dense, but as O(n) if the matrix

3.2. CLASSICAL ITERATIVE METHODS 33

is sparse. Thus the total cost of one iteration of the Gauss-Seidel method scales as O(n2)
operations for a dense matrix and O(n) operations for a sparse matrix.

In that case, the i-th entry of the vector x(k) is given by

x
(k)
i =

bi −
∑

j<i aijx
(k)
j −

∑
j>i aijx

(k−1)
j

aii
.

Once x
(k)
i is computed, x

(k−1)
i is not useful anymore. The update can be implemented in

place. Contrary to the Jacobi method, the Gauss-Seidel algorithm is hardly parallelisable.
We have the same convergence theorem as previously.

Proposition 3.6. If A is row-wise diagonally dominant, i.e. for each 1 ≤ i ≤ n, |aii| >∑
j ̸=i |aij |, then the Gauss-Seidel method converges.

Proof. Let y, z ∈ Cn such that z = M−1Ny. Then we have Mz = Ny so

aiizi = −
∑
j>i

aijyj −
∑
j<i

aijzj .

Let i0 such that |zi0 | = ∥z∥∞. Then

|ai0i0zi0 | ≤
∑
j<i0

|ai0j |∥z∥∞ +
∑
j>i0

|ai0j |∥y∥∞

but since A is diagonally dominant

|ai0i0 | −
∑
j<i0

|ai0j | >
∑
j>i0

|ai0j | > 0,

thus

∥z∥∞ ≤
∑

j>i0
|ai0j |

|ai0i0 | −
∑

j<i0
|ai0j |

∥y∥∞ ≤ max
1≤i0≤n

(∑
j>i0

|ai0j |
|ai0i0 | −

∑
j<i0

|ai0j |

)
∥y∥∞.

Since A is diagonally dominant, max1≤i0≤n

(∑
j>i0

|ai0j |
|ai0i0 |−

∑
j<i0

|ai0j |

)
< 1. This shows that ρ(M−1N) ≤

∥M−1N∥∞ < 1.

3.2.3 Successive over relaxation (SOR) method

For the SOR method, we have a positive parameter ω and we set Mω = 1
ωD − E and Nω =

(1ω − 1)D + F .
The SOR method also involves the inversion of a triangular matrix, as such, the cost of

one iteration of the algorithm scales as O(n2) for a dense matrix and O(n) for a sparse matrix.
We also have the same type of convergence result.

Proposition 3.7. If A is row-wise diagonally dominant, i.e. for each 1 ≤ i ≤ n, |aii| >∑
j ̸=i |aij |, and if 0 < ω ≤ 1 then the SOR method converges.

Proof. Exercise.

34 CHAPTER 3. STATIONARY ITERATIVE METHODS

Figure 3.1: Jacobi and Gauss-Seidel methods for the one-dimensional discrete Laplacian. The
speed of convergence is asymptotically given by the spectral radius of the iteration matrix of
both methods.

For a given matrix A, one can wonder how to optimise ω in order to minimise the number
of iterations, hence for that, we can try to find ω such that the spectral radius ρ(M−1

ω Nω)
is the smallest. It turns out that it is tricky to find the optimal relaxation parameter, as it
depends heavily on the matrix. For certain classes of matrices, the explicit value of the optimal
relaxation parameter is known (for example for symmetric, positive-definite tridiagonal ma-
trices), but usually it depends on the eigenvalues of some matrix, that is not straightforward
to compute.

(a) Residuals after 100 iterations (b) Spectral radius

Figure 3.2: SOR method for the one-dimensional discrete Laplacian. The speed of convergence
of the SOR method strongly depends on the choice of the parameter ω.

3.3 Richardson iteration

For Richardson iteration, the method corresponds to taking M = 1
α id and N = 1

α id−A, with
α ∈ R a parameter:

x(k+1) = (id−αA)x(k) + αb. (3.5)

3.3. RICHARDSON ITERATION 35

Proposition 3.8. Assume that A ∈ Cn×n is invertible and diagonalisable with eigenvalues
λ1, . . . , λn. Then the Richardson iteration converges if and only if 0 < α < 2

minRe(λj)
|λj |2 or

2
maxRe(λj)

|λj |2 < α < 0.

Proof. Again we need to study the spectral radius of M−1N = (id−αA). The eigenvalues of
id−αA are simply 1−αλj , j = 1 . . . n. Hence ρ(M−1N) < 1 ⇐⇒ ∀ 1 ≤ j ≤ n, |1−αλj |2 < 1.
But |1− αλj |2 = 1− 2αRe(λj) + α2|λj |2 < 1 thus the condition is

∀ 1 ≤ j ≤ n, α2 < 2αRe(λj).

This can be satisfied only if α has the same sign as all the λj and we find the result.

Suppose now that the matrix A is diagonalisable and has only positive eigenvalues 0 <
λ1 < · · · < λn. We can wonder for which value α, the spectral radius of the iteration matrix
id−αA is the smallest:

ρ(id−αA) = max(|1− αλ1|, . . . , |1− αλn|) = max(|1− αλ1|, |1− αλn|).

Proposition 3.9. The spectral radius of the iteration matrix id−αA is minimal for

α =
2

λ1 + λn
,

and for this value we have

ρ(id−αA) =
λn − λ1

λn + λ1
.

Proof. We have that

ρ(id−αA) = max
1≤k≤n

|1− αλk| = max(|1− αλ1|, |1− αλn|).

α

ρ(1 − αA)

1
λn

|1 − αλn|
|1 − αλ1|

1
λ1

Graphically, we see that the minimal value of ρ(id−αA) is attained when

−1 + αλn = 1− αλ1,

which gives α = 2
λ1+λn

and ρ(id−αA) = λn−λ1
λn+λ1

.

Remark 3.10. For a Hermitian positive definite matrix, this can be rewritten as

ρ(id−αA) =
cond2(A)− 1

cond2(A) + 1
.

If the condition number cond2(A) is large, the spectral radius of the iteration matrix is close
to 1.

36 CHAPTER 3. STATIONARY ITERATIVE METHODS

3.3.1 Interpretation as a gradient descent method

Suppose that A ∈ Rn×n is a symmetric positive-definite matrix and consider the functional F

F (x) =
1

2
⟨x,Ax⟩ − ⟨b, x⟩, (3.6)

where ⟨·, ·⟩ denotes the scalar product of Rn. Since A is positive-definite, the functional
F is convex. Moreover, lim∥x∥→∞ F (x) = ∞, hence F has a unique minimum satisfying
∇F (x∗) = Ax∗ − b = 0. This means that to solve the linear problem Ax = b, we can use a
minimisation algorithm to the functional F . A simple fixed-step gradient algorithm is thus

x(k+1) = x(k) − α∇F (x(k)) = (id−αA)x(k) + αb,

which is simply the Richardson iteration of the previous subsection.

3.3.2 Steepest descent

The parameter α can also be chosen adaptively, a natural choice being to minimise at each
iteration the function f : α 7→ F (x(k) + αp(k)) where p(k) = b−Ax(k).

By composition, the function f is convex, hence the minimum is attained where the deriva-
tive vanishes. First we have

F (x(k) + αp(k)) =
1

2
⟨x(k), Ax(k)⟩+ α2

2
⟨p(k), Ap(k)⟩+ α⟨p(k), Ax(k)⟩ − ⟨x(k), b⟩ − α⟨p(k), b⟩,

thus

f ′(α) = α⟨p(k), Ap(k)⟩+ ⟨p(k), Ax(k)⟩ − ⟨p(k), b⟩.

Thus the parameter αk such that f ′(αk) = 0 is given by

αk =
⟨p(k), b−Ax(k)⟩
⟨p(k), Ap(k)⟩

=
⟨p(k), p(k)⟩
⟨p(k), Ap(k)⟩

. (3.7)

Algorithm 3.1 Steepest descent gradient
function SteepestDescent(A, b, εtol)

x = 0
p = b
while ∥p∥ > εtol do

α = ∥p∥2
⟨p,Ap⟩

x = x+ αp
p = p− αAp

end while
return x

end function

3.4. STATIONARY ITERATIVE METHODS IN THE XXIST CENTURY 37

Since A is symmetric, positive-definite, the bilinear form (x, y) 7→ ⟨x,Ay⟩ defines a scalar
product. Let us denote the associated norm by ∥ · ∥A. Note that

1

2
⟨x− x∗, A(x− x∗)⟩ =

1

2
⟨x,Ax⟩ − ⟨x,Ax∗⟩+

1

2
⟨x∗, Ax∗⟩

=
1

2
⟨x,Ax⟩ − ⟨x, b⟩+ 1

2
⟨x∗, Ax∗⟩

= F (x) +
1

2
⟨x∗, Ax∗⟩.

Thus minimising F is the same thing as minimising ∥x− x∗∥A.
With this observation, we can prove the following theorem on the convergence of the

steepest descent algorithm.

Theorem 3.11. Assume that A is a symmetric, positive-definite matrix. Denote by (x(k)) the
sequence by Algorithm 3.1. Then we have for all k ≥ 0

∥x(k) − x∗∥A ≤
(cond2(A)− 1

cond2(A) + 1

)k
∥x(0) − x∗∥. (3.8)

Proof. By definition of x(k), recalling that αopt =
2

λmin+λmax
and we have

∥x(k) − x∗∥A = min
α∈R

∥x(k−1) − x∗ + αp(k−1)∥A

≤ ∥x(k−1) − x∗ + αoptp
(k−1)∥A

≤ ∥x(k−1) − x∗ + αopt(b−Ax(k−1))∥A
≤ ∥x(k−1) − x∗ + αopt(Ax∗ −Ax(k−1))∥A
≤ ∥(id−αoptA)(x(k−1) − x∗)∥A,
≤ ∥A1/2(id−αoptA)(x(k−1) − x∗)∥2
≤ ∥ id−αoptA∥2∥x(k−1) − x∗∥A,
≤ ρ(id−αoptA)∥x(k−1) − x∗∥A,

where we have used that ρ(id−αoptA) = ∥ id−αoptA∥2 because A is hermitian. The result
follows from ρ(id−αoptA) = cond2(A)−1

cond2(A)+1 .

Again an ill-conditioned matrix impedes the speed of convergence of the steepest descent
algorithm.

3.4 Stationary iterative methods in the XXIst century

Most of the methods introduced here have been proposed in the XIXth or in the early XXth

century. Since then, these methods have been superseded by more modern approachs based
on the Krylov methods, like the conjugate gradient algorithm or GMRES. These have better
convergence properties and are numerically more efficient to reach accurate approximation to
the solution.

These methods should however not be dismissed as they provide theoretical insights on
the convergence theory of iterative methods, and the importance of conditioning in that re-
gard. Finally, stationary iterative methods can be used in combination with Krylov methods.

38 CHAPTER 3. STATIONARY ITERATIVE METHODS

This is the idea underlying modern numerical linear algebra methods, such as the multigrid
method [CG22, Chapter 4], where classical iterative methods are used as a cheap precondi-
tioner.

Chapter 4

Krylov subspace methods

The iterative methods in the previous chapter are only using the knowledge of the previous
iterate to build the next one. Instead, it seems preferable to include more directions to improve
the approximation of the solution to the linear system Ax∗ = b. This idea is formalised in
the framework of the projection processes and in this setting, we will see that the Krylov
subspace methods emerge as a natural candidate for these projection processes. The celebrated
conjugate gradient algorithm and GMRES are two instances of projection processes based on
Krylov subspaces.

4.1 Projection process

4.1.1 Definition and well-posedness of the projection process

Definition 4.1. Let Ck and Sk be k-dimensional linear subspaces of Cn, A ∈ Cn×n and
x(0) ∈ Cn. We say that x(k) ∈ Cn is the result of a projection process if there exists z(k) ∈ Sk

such that {
x(k) = x(0) + z(k)

r(k) = b−Ax(k) ⊥ Ck.
(4.1)

We say that the projection process is well-defined if x(k) exists and is uniquely defined.

We immediately notice that r(k) = r(0) − Az(k), hence the condition can also be phrased
as Az(k) ⊥ r(0) + Ck. The goal is to establish natural conditions on Ck and Sk under which
the projection process is well-defined. We will call Sk the search space and Ck the constraint
space.

Proposition 4.2. Let (c1, . . . , ck) (resp. (s1, . . . , sk)) be a basis of Ck (resp. Sk) and let
Ck = [c1; . . . ; ck] and Sk = [s1; . . . ; sk]. The projection process is well-defined if and only if
C∗
kASk is invertible.

Proof. By definition of the projection process, we can write x(k) = x(0) + Sktk for a vector
tk ∈ Ck. By the orthogonal constraint, we have r(k) ⊥ Ck, which means that C∗

kr
(k) = 0. But

r(k) = r(0) − ASktk, thus we find that tk solves C∗
kASktk = C∗

kr
(0). tk is uniquely defined for

all r(0) if and only if C∗
kASk is invertible.

39

40 CHAPTER 4. KRYLOV SUBSPACE METHODS

Under the assumption that the projection process is well-defined, we can wonder whether
there are conditions such that the norm of the residual r(k) is bounded by the norm of the
initial one ∥r(0)∥. We have

r(k) = r(0) −ASktk

= r(0) −ASk(C
∗
kASk)

−1C∗
kr

(0)

=
(
id−ASk(C

∗
kASk)

−1C∗
k

)
r(0).

By a simple calculation, we see that the operator Pk = ASk(C
∗
kASk)

−1C∗
k is a projection. If

we require ∥r(k)∥ ≤ ∥r(0)∥ for any r(0), then we need Pk to be an orthogonal projector. In
that case, a possible choice is to take Ck = ASk.

If the matrix A is Hermitian positive-definite, we can also investigate whether there is
another choice by looking at the operator norm of the error x(k) − x∗:

∥x(k) − x∗∥A = ∥A1/2(x(k) − x∗)∥
= ∥A1/2(x(0) + Sktk − x∗)∥
= ∥A1/2(x(0) + Sk(C

∗
kASk)

−1C∗
kr

(0) − x∗)∥
= ∥A1/2(x(0) + Sk(C

∗
kASk)

−1C∗
k(Ax∗ −Ax(0))− x∗)∥

=
∥∥(id−A1/2Sk(C

∗
kASk)

−1C∗
kA

1/2
)
(A1/2x(0) −A1/2x∗)

∥∥.
The matrix Qk = A1/2Sk(C

∗
kASk)

−1C∗
kA

1/2 is also a projection, which is not orthogonal in
general. Again a natural choice to ensure that Qk is an orthogonal projector is to set Ck = Sk.

In both cases, we will show that such choices for the constraint space lead to a well-defined
projection process.

Proposition 4.3. Suppose that A is invertible and let Sk be a k-dimensional subspace of Cn.
Then

1. if Ck = ASk, then the projection process is well-defined;

2. if A is Hermitian positive-definite and Ck = Sk, then the projection process is well-
defined.

Proof. 1. By Proposition 4.2, it is enough to check that C∗
kASk is invertible where Ck =

[c1; . . . ; ck] and Sk = [s1; . . . ; sk], for some basis (c1, . . . , ck) (resp. (s1, . . . , sk)) of Ck

(resp. Sk). Let y ∈ Ck such that C∗
kASky = 0, then ASky ⊥ Ck = ASk. Hence

ASky ∈ ASk ∩ AS ⊥
k , hence ASky = 0, thus y = 0 since A is invertible and Sk is

full-rank.

2. Again it suffices to check that C∗
kASk is invertible. Let y ∈ Ck such that S∗

kASky = 0,
then y∗S∗

kASky = 0, thus ∥Sky∥A = 0. Since Sk is full-rank, y = 0.

4.1.2 Krylov subspace methods

Looking at the residual or the norm of the error gives a condition on the constraint space. It
remains to see how to wisely pick the search space Sk.

4.1. PROJECTION PROCESS 41

Proposition 4.4. Suppose that the projection process (4.1) is well-defined. Assume that
r(0) ∈ Sk and ASk = Sk. Then we have r(k) = 0.

This means that the projection process gives the exact solution to the linear system Ax∗ =
b, if Sk is a stable subspace under A.

Proof. By definition, we have r(k) = r(0) − Az(k), where z(k) ∈ Sk. Since r(0) ∈ Sk and
ASk = Sk, r(k) ∈ ASk . Thus there is y ∈ Ck such that r(k) = ASky. By definition,
r(k) ⊥ Ck, hence C∗

kr
(k) = 0, so C∗

kASky = 0. Because the projection process is well-defined,
this means that C∗

kASk is invertible hence y = 0 and r(k) = 0.

From the previous result, it seems reasonable to start with S1 = Span(r(0)) and work with
nested sequences spaces S1 ⊂ S2 ⊂ Since we want to find a stable subspace under A, it
is natural to introduce the Krylov subspaces.

Definition 4.5. Let v ∈ Cn, A ∈ Cn×n and k ∈ N. We call Kk(A, v) = Span(v,Av,A2v, . . . , Ak−1v)
the Krylov subspace.

Proposition 4.6. With the notation of Definition 4.5, the following assertions are true

1. Kk(A, v) ⊂ Kk+1(A, v);

2. there is an integer d ∈ N such that{
Kd+1(A, v) = Kd(A, v)

Kj−1(A, v) ̸= Kj(A, v), ∀1 ≤ j ≤ d

The integer d is called the grade of v with respect to A;

3. for j ≤ d, where d is the grade of v with respect to A, dimKj(A, v) = j;

4. for j ≤ d, where d is the grade of v with respect to A, Kj(A, v) = {P (A)v, P ∈ Cj−1[X]};

5. if A is invertible and d is the grade of v with respect to A, then AKd(A, v) = Kd(A, v).

Thanks to the last property, the Krylov subspace Kk(A, r
(0)) is a good candidate for the

search space of the projection process.

Proof. The first four properties are clear. We have AKd(A, v) ⊂ Kd+1(A, v) = Kd(A, v), so it
suffices to show that dimAKd(A, v) = dimKd(A, v) to have the equality. Let (αi)1≤i≤d ∈ Cd

such that
∑d

i=1 αiA
iv = 0. Since A is invertible, this means that

∑d−1
i=0 αi+1A

iv = 0. But
(Aiv)0≤i≤d−1 is a basis of Kd(A, v), thus αi = 0 for all 1 ≤ i ≤ d. Hence (Aiv)1≤i≤d is a free
family and dim AKd(A, v) = d = dim Kd(A, v).

From this study, we have established that Krylov subspaces are good candidates for a
search space for the projection process, as they guarantee a termination of the algorithm after
a finite number of steps. For the constraint space, based on the norm of the residual or the
error, we have identified two possible choices

1. Ck = ASk ;

2. Ck = Sk, if A is Hermitian positive-definite.

42 CHAPTER 4. KRYLOV SUBSPACE METHODS

In both cases, we have already proved that the projection process is well-defined. Taking Sk =
Kk(A, r

(0)), the first choice yields the GMRES algorithm and the second choice the conjugate
gradient algorithm. We collect all these results and state the mathematical characterisation
of both algorithms in the next theorem.

Theorem 4.7. Let A ∈ Cn×n be an invertible matrix, b ∈ Cn and x∗ ∈ Cn be the solution to
Ax∗ = b. Let x(0) ∈ Cn and r(0) = b−Ax(0). Assume that r(0) has a grade d ≥ 1 with respect
to A. Let x(k) be defined by the projection process (4.1):{

x(k) = x(0) + z(k) where z(k) ∈ Sk

r(k) = b−Ax(k) ⊥ Ck.

1. (Characterisation of the conjugate gradient algorithm) If A is Hermitian and positive-
definite, Sk = Ck = Kk(A, r

(0)) for all 1 ≤ k ≤ d, then the projection process is
well-defined for every 1 ≤ k ≤ d and x(d) = x∗. Moreover we have the following
characterisation for all iterates x(k), 1 ≤ k ≤ d

x(k) − x∗ ⊥A Kk(A, r
(0)), and ∥x(k) − x∗∥A = min

x∈x(0)+Kk(A,r(0))
∥x− x∗∥A. (4.2)

2. (Characterisation of GMRES) If Sk = Kk(A, r
(0)) and Ck = AKk(A, r

(0)), then the
projection process is well-defined for every 1 ≤ k ≤ d and x(d) = x∗. Moreover we have
the following characterisation for all residuals r(k), 1 ≤ k ≤ d

r(k) ⊥ AKk(A, r
(0)), and ∥r(k)∥ = min

x∈x(0)+Kk(A,r(0))
∥b−Ax∥. (4.3)

Proof. The well-posedness is given by Proposition 4.2 and the termination of the projection
process is obtained by combining Proposition 4.4 and Proposition 4.6.

We now turn to the mathematical characterisations (4.2) and (4.3). These characterisa-
tions rely on rephrasing the orthogonalisation with respect to the constraint space Ck as an
orthogonal projection with respect to a new scalar product.

1. by definition of the projection process, we have r(k) = b−Ax(k) = A(x∗ − x(k)) ⊥ Ck =
Kk(A, r

(0)). Hence we have, using that A defines a scalar product

x(k) − x∗ ⊥ AKk(A, r
(0)) ⇔ x(k) − x∗ ⊥A Kk(A, r

(0)) ⇔ z(k) + x(0) − x∗ ⊥A Kk(A, r
(0)).

Since z(k) belongs to the subspace Sk = Kk(A, r
(0)), we have that

∥z(k) + x(0) − x∗∥A = min
z∈Kk(A,r(0))

∥z + x(0) − x∗∥A,

which is exactly Equation (4.2).

2. by definition of the projection process, we have r(k) = b − Ax(k) ⊥ Ck = AKk(A, r
(0)).

This is equivalent to A∗A(x(k) − x∗) ⊥ Kk(A, r
(0)). Since A∗A defines a scalar product,

we have by the same reasoning as before

∥x(k) − x∗∥A∗A = min
z∈Kk(A,r(0))

∥z + x(0) − x∗∥A∗A.

Using that for any y ∈ Cn, ∥y∥2A∗A = ⟨y,A∗Ay⟩ = ∥Ay∥2, we have (4.3).

The mathematical characterisations (4.2) and (4.3) will be central in establishing the
practical algorithms and the convergence rates of both algorithms.

4.2. THE CONJUGATE GRADIENT ALGORITHM 43

4.2 The conjugate gradient algorithm

The CG algorithm is an iterative method to solve Ax∗ = b when A is Hermitian positive-
definite. This algorithm has several properties that make the algorithm efficient numerically:

• it has a short-term recurrence that makes it cheap to implement;

• it has a well-understood convergence behaviour based on the spectrum of the matrix A.

Such features are not shared with the GMRES algorithm as it will be exposed in Section 4.3.
In order to see that the CG algorithm has a short-term recurrence, it is natural to look at

the Gram-Schmidt process to build an orthogonal basis to Kk(A, r
(0)). This is the goal of the

Arnoldi algorithm.

4.2.1 The Arnoldi algorithm

For this algorithm, we are not going to assume that A is Hermitian positive-definite. We
simply require A to be invertible. The Arnoldi algorithm is simply a Gram-Schmidt process
for Kk(A, v) = Span(v,Av, . . . , Ak−1v).

Algorithm 4.1 Arnoldi algorithm
function Arnoldi(A, v, k)

v1 =
v

∥v∥
for j = 1, . . . , k do

for i = 1, . . . , j do
hij = ⟨vi, Avj⟩1

end for
v̂j+1 = Avj −

∑j
i=1 hijvi

hj+1,j = ∥v̂j+1∥
if hj+1,j ̸= 0 then

vj+1 =
v̂j+1

hj+1,j

end if
end for
return (v1, . . . , vk)

end function

The Arnoldi algorithm breaks down if in the course of the algorithm hj+1,j = 0. As we
are going to show, it does not happen if j ≤ d where d is the grade of v with respect to A.

Proposition 4.8. Let v ∈ Cn be of grade d with respect to A. Then the following assertions
are true

1. the Arnoldi algorithm 4.1 is well-posed for k ≤ d (i.e. hj+1,j ̸= 0 for j ≤ d−1), moreover
for all j ≤ d− 1, (v1, . . . , vj) is an orthonormal basis of Kj(A, v);

1the convention used is ⟨x, y⟩ =
∑n

i=1 x
∗
i yi

44 CHAPTER 4. KRYLOV SUBSPACE METHODS

2. let Vk =
[
v1, . . . , vk

]
∈ Cn×k and let Hkk =


h11 h1k

h21
. . .

...
. . .

0 hk,k−1 hkk

 ∈ Ck×k then

AVk = VkHkk + hk+1,kvk+1e
T
k , (4.4)

and
V ∗
k AVk = Hkk; (4.5)

3. if A is Hermitian, then Hkk is tridiagonal with real entries.

Remark 4.9. Matrices of the form


h11 h1k

h21
. . .

...
. . .

0 hk,k−1 hkk

 ∈ Ck×k are called upper Hes-

senberg.

Proof. 1. by definition of the grade of v, (v,Av, . . . , Aj−1v) is a basis of the Krylov space
Kj(A, v). Since (v1, . . . , vj) are obtained from a Gram-Schmidt process of (v,Av, . . . , Aj−1v)

2. by definition of the algorithm, at each step j ≤ d we have

Avj =

j+1∑
i=1

hijvi = Vj+1

 h1j
...

hj+1,j

 .

Thus

AVk = Vk+1


h11 h12 . . . h1k
h21 h22 . . .

0 h32 . . .
...

...
. . .

0 hk+1,k


= VkHkk + hk+1,kvk+1e

T
k .

The second identity (4.5) follows from the orthogonality of (vj)1≤j≤k+1.

3. we have V ∗
k AVk = Hkk. The matrix Hkk is upper Hessenberg and V ∗

k AVk is Hermitian
if A is Hermitian, hence Hkk is tridiagonal. It remains to show that the entries of Hkk

are real. We have hj+1,j = ∥v̂j+1∥ and hjj = ⟨vj , Avj⟩, thus the entries are real.

The Arnoldi algorithm has a remarkable simplification when A is Hermitian. It is not
necessary to reorthogonalise the vectors Avj against (vi)1≤i≤j−2, by the property above. The
resulting algorithm is called the Hermitian Lanczos algorithm.

The three-term recurrence in the Hermitian Lanczos algorithm is the reason why the CG
algorithm has also a short term recurrence.

4.2. THE CONJUGATE GRADIENT ALGORITHM 45

Algorithm 4.2 Hermitian Lanczos algorithm
function HermitianLanczos(A, v, k)

v1 =
v

∥v∥
for j = 1, . . . , k do

hjj = ⟨vj , Avj⟩
v̂j+1 = Avj − hjjvj − hj−1,jvj−1

hj+1,j = ∥v̂j+1∥
if hj+1,j ̸= 0 then

vj+1 =
v̂j+1

hj+1,j

end if
end for
return (v1, . . . , vk)

end function

4.2.2 The practical CG algorithm

From the Hermitian Lanczos algorithm, we will at first derive the three-term recurrence of the
CG algorithm.

Let (v1, . . . , vd) be the family of orthonormal vectors obtained by the Hermitian Lanczos
algorithm applied to Kd(A, r

(0)). We are going to exploit the tridiagonal structure of the
matrix Tk = V ∗

k AVk, k = 1, . . . , d.

Lemma 4.10. There exist (µ1, . . . , µd−1) ∈ Rd−1 and (λ1, . . . , λd) ∈ Rd such that for all 1 ≤

k ≤ d, we have Tk = LkΛkL
T
k where Lk =


1
µ1 1

.
µk−1 1

 and Λk = diag(λ1, . . . , λk).

Proof. The matrix Tk is tridiagonal and positive-definite, so it has a unique LU factorisation
Tk = LkUk. Since Tk is Hermitian and invertible, we can factorise the diagonal elements of
Uk. Using the uniqueness of the LU factorisation, we have a unique factorisation of Tk of the
form

Tk = LkΛkL
T
k ,

where Lk =


1

µ
(k)
1 1

.
µ
(k)
k−1 1

 and Λk = diag(λ
(k)
1 , . . . , λ

(k)
k). It remains to show that

(λ
(k)
j) and (µ

(k)
j) are independent of k. This is done by noticing that

Tk+1 =

 αk

αk βk+1

Tk

 =


µk 1

Lk


λk+1

Λk

 µk

1

LT
k


=

[
LkΛkL

T
k µkLkΛkek

µke
T
kΛkLk λk+1

]
.

By identification, the claim is proved.

46 CHAPTER 4. KRYLOV SUBSPACE METHODS

Proposition 4.11. Let r(0) be of grade d with respect to A Hermitian positive-definite. Let
(v1, . . . , vd) be the vectors obtained by the Hermitian Lanczos algorithm. With the notation
of Lemma 4.10, there are coefficients (ck)1≤k≤d defined iteratively such that the CG iterates
(x(k))1≤k≤d and (r(k))1≤k≤d are defined by

p̂k = vk+1 − µkp̂k−1

x(k) = x(k−1) + ckp̂k−1

r(k) = r(k−1) − ckAp̂k−1

(4.6)

where p̂−1 = 0 and c
(0)
0 = 0.

Proof. By definition of the CG algorithm, we have{
x(k) = x(0) + z(k), z(k) ∈ Kk(A, r

(0))

r(k) = b−Ax(k) ⊥ Kk(A, r
(0)).

(4.7)

We know that for each k ≤ d, (v1, . . . , vk) is a basis of Kk(A, r
(0)) so x(k) = x(0)+Vktk, tk ∈ Ck

and Vk =
[
v1, . . . , vk

]
. Hence r(k) = r(0) −AVktk. By orthogonality, we have V ∗

k r
(k) = 0, thus

V ∗
k r

(0)−V ∗
k AVktk = 0 and tk = (V ∗

k AVk)
−1V ∗

k r
(0). Plugging this in x(k) and using Lemma 4.10

yield

x(k) = x(0) + Vk(V
∗
k AVk)

−1V ∗
k r

(0)

= x(0) + VkL
−T
k Λ−1

k L−1
k V ∗

k r
(0).

Let P̂k = VkL
−T
k =

[
p̂0, . . . , p̂k−1

]
. P̂k solves P̂kL

T
k = Vk so the columns of P̂k satisfies

[
p̂0, . . . , p̂k−1

]

1 µ1

.
. . . µk−1

1

 =
[
v1, . . . , vk

]
[
p̂0, p̂1 + µ1p̂0, . . . , p̂k−1 + µk−1p̂k−2

]
=

[
v1, . . . , vk

]
,

which is the first item in Equation (4.6).
We have

x(k) = x(0) + VkL
−T
k Λ−1

k L−1
k V ∗

k r
(0)

= x(0) + P̂kΛ
−1
k P̂ ∗

k r
(0)

= x(0) +
[
P̂k−1, p̂k−1

]
λ−1
k

Λ−1
k−1

[
P̂ ∗
k−1

p̂∗k−1

]
r(0)

= x(0) + P̂k−1Λ
−1
k−1P̂

∗
k−1r

(0) +
p̂∗k−1r

(0)

λk
p̂k−1

= x(k−1) +
p̂∗k−1r

(0)

λk
p̂k−1,

4.2. THE CONJUGATE GRADIENT ALGORITHM 47

which is the second item in (4.6) with ck =
p̂∗k−1r

(0)

λk
.

For the last item, we use the definition of r(k) and the expression of x(k)

r(k) = b−Ax(k) = r(k−1) − ckAp̂k−1.

Since the Arnoldi vectors (vj)1≤j≤d can be generated using a three-term recurrence, the
CG algorithm derived from Equation (4.6) can be rephrased in a three-term recurrence. There
is however a way to get rid of the Arnoldi vectors and rewrite the CG algorithm into a two-
term recurrence, which is the standard way to implement CG. This is based on the following
observations on the vectors p̂j and r(j).

Remark 4.12. 1. the vectors (p̂j)0≤j≤d−1 define an A-orthogonal basis (i.e. ⟨p̂i, Ap̂j⟩ = 0
if i ̸= j): we have

P̂ ∗
dAP̂d = L−1

d V ∗
d AVdL

−T
d = Λd.

2. we have r(k) ⊥ r(j) for any j < k: by definition of r(j), we have r(j) = r(0) −Az(j) with
z(j) ∈ Kj(A, r

(0)), thus r(j) ∈ Kj+1(A, r
(0)) but r(k) ⊥ Kk(A, r

(0)) ⊃ Kj+1(A, r
(0)).

3. p̂k ∈ Span(r(k), p̂k−1) for all 0 ≤ k ≤ d− 1. Since p̂k = vk+1 − µk−1p̂k−1, it is sufficient
to prove that r(k) and vk+1 are colinear: (r(j))0≤j≤k−1 and (vj)1≤j≤k are orthogonal
vectors, that span the same space Kk(A, r

(0)), thus necessarily, r(k) and vk+1 are colinear
for 0 ≤ k ≤ d− 1.

The idea is to generate the sequences (x(k)), (pk), (r
(k)) of the CG algorithm (pk and p̂k

are colinear) starting with p0 = r(0) and using that

• pk = r(k) + ωkpk−1 where ωk is chosen such that pk ⊥A pk−1, i.e. ωk = − ⟨Apk−1,r
(k)⟩

⟨pk−1,Apk−1⟩ ;

• r(k) = r(k−1) − αk−1Apk−1 and αk−1 is set such that r(k) ⊥ r(k−1), i.e. αk−1 =
∥r(k−1)∥2

⟨r(k−1),Apk−1⟩
.

The formula for the constants αk−1 and ωk can be further simplified by noticing that:

• ⟨r(k−1), Apk−1⟩ = ⟨pk−1−ωk−1pk−2, Apk−1⟩ = ⟨pk−1, Apk−1⟩, by A-orthogonality of pk−2

and pk−1;

• ωk = − ⟨r(k),Apk−1⟩
⟨pk−1,Apk−1⟩ = − ⟨r(k),r(k−1)−r(k)⟩

⟨pk−1,Apk−1⟩
1

αk−1
= ∥r(k)∥2

∥r(k−1)∥2 .

The cost of implementing the CG algorithm is a single matrix vector multiplication at
each step, and the storage of the vectors x(k), r(k) and pk.

The properties of the CG sequences (x(k)), (pk) and (r(k)) which have been discussed above
is summarised in the theorem below.

Theorem 4.13. Let A ∈ Cn×n a Hermitian, positive-definite matrix, x(0) ∈ Cn such that
r(0) = b−Ax(0) is of grade d with respect to A.

Then the sequence (x(k)) defined by Algorithm 4.3 is the conjugate gradient algorithm
characterised by ∥x(k) − x∗∥A = minz∈x(0)+Kk(A,r(0)) ∥z − x∗∥A where x∗ is the solution to
Ax∗ = b.

The algorithm stops after d iterations with the exact solution: x(d) = x∗. The family of
residuals (r(j))0≤j≤k−1 defines an orthogonal basis of Kk(A, r

(0)) for each 1 ≤ k ≤ d and
(pj)0≤j≤k−1 is an A-orthogonal basis of Kk(A, r

(0)) for each 1 ≤ k ≤ d.

48 CHAPTER 4. KRYLOV SUBSPACE METHODS

Algorithm 4.3 Conjugate-gradient algorithm

function CG(A, b, x(0), εtol)
p0 = r(0) = b−Ax(0), k = 0
while ∥r(k)∥ > εtol do

k = k + 1

αk−1 =
∥r(k−1)∥2

⟨pk−1Apk−1⟩
x(k) = x(k−1) + αk−1pk−1

r(k) = r(k−1) − αk−1Apk−1

ωk = ∥rk∥2
∥rk−1∥2

pk = r(k) + ωkpk−1

end while
return x(k)

end function

4.2.3 Convergence of the CG algorithm

Using the mathematical characterisation of the CG algorithm, we can estimate the speed of
convergence of the CG algorithm.

Recall that x(k) is defined by ∥x(k) − x∗∥A = minz∈x(0)+Kk(A,r(0)) ∥z − x∗∥A. Let z ∈
x(0) +Kk(A, r

(0)), by definition of the Krylov space Kk(A, r
(0)), we can write

z = x(0) +
k−1∑
i=0

ζiA
ir(0), (ζi)0≤i≤k−1 ∈ Ck,

thus

z − x∗ = x(0) − x∗ +
k−1∑
i=0

ζiA
i+1(x(0) − x∗) = ϕ(A)(x(0) − x∗),

where ϕ is a polynomial such that ϕ(0) = 1 and deg ϕ ≤ k.
The minimisation problem becomes

∥x(k) − x∗∥A = min
ϕ∈Ck[X]
ϕ(0)=1

∥ϕ(A)(x(0) − x∗)∥A

= min
ϕ∈Ck[X]
ϕ(0)=1

∥A1/2ϕ(A)(x(0) − x∗)∥

= min
ϕ∈Ck[X]
ϕ(0)=1

∥ϕ(A)A1/2(x(0) − x∗)∥

≤ min
ϕ∈Ck[X]
ϕ(0)=1

∥ϕ(A)∥∥x(0) − x∗∥A.

Since A is Hermitian and positive-definite, there is a unitary matrix U and a diagonal
matrix Λ with positive entries such that A = UΛU∗. The matrix norm of ϕ(A) is then
∥ϕ(A)∥ = max1≤i≤n |ϕ(λi)|. This gives a convergence result for the CG algorithm.

4.2. THE CONJUGATE GRADIENT ALGORITHM 49

Theorem 4.14. Let x(k) be the k-th iterate of the CG algorithm with A. Let 0 < λ1 ≤ · · · ≤ λn

be the eigenvalues of A. Then we have

∥x(k) − x∗∥A ≤ min
ϕ∈Ck[X]
ϕ(0)=1

max
1≤i≤n

|ϕ(λi)| ∥x(0) − x∗∥A. (4.8)

Remark 4.15. If k = n, by picking ϕ as the Lagrange interpolation polynomial such that
ϕ(0) = 1 and ϕ(λi) = 0 for all 1 ≤ i ≤ n, we prove that CG stops after n iterations.

It appears that it is convenient to relax max1≤i≤n |ϕ(λi)| to maxλ1≤λ≤λn |ϕ(λ)| in order to
explicit a convergence rate of the CG algorithm.

Corollary 4.16. Let x(k) be the k-th iterate of the CG algorithm with A and cond2(A) the
condition number of A with respect to the 2-norm. Then we have

∥x(k) − x∗∥A ≤ 2
(√cond2(A)− 1√

cond2(A) + 1

)k
∥x(0) − x∗∥A. (4.9)

Proof. We have ∥x(k) − x∗∥A ≤ minϕ∈Ck[X]
ϕ(0)=1

maxλ1≤λ≤λn |ϕ(λ)| ∥x(0) − x∗∥A and we use the

fact that the min-max problem has an explicit solution given by the rescaled Chebyshev
polynomial 2

χk(λ) =
Tk

(
λ1+λn−2λ
λn−λ1

)
Tk

(
λn+λ1
λn−λ1

) =
cos

(
k arccos

(
λ1+λn−2λ
λn−λ1

))
Tk

(
λn+λ1
λn−λ1

) .

Then
min

ϕ∈Ck[X]
ϕ(0)=1

max
λ1≤λ≤λn

|ϕ(λ)| = 1

Tk

(
λn+λ1
λn−λ1

) .
Let κ = λn

λ1
= cond2(A), then

λn + λ1

λn − λ1
=

κ+ 1

κ− 1
=

1

2

(√κ− 1√
κ+ 1

+

√
κ+ 1√
κ− 1

)
.

We invoke another property3 of the Chebyshev polynomials Tk

Tk

(x+ 1
x

2

)
=

1

2
(xk + x−k), ∀x ∈ R.

So we deduce

Tk

(κ+ 1

κ− 1

)
=

1

2

((√κ− 1√
κ+ 1

)k
+
(√κ+ 1√

κ− 1

)k)
≥ 1

2

(√κ+ 1√
κ− 1

)k
.

Thus we obtain
min

ϕ∈Ck[X]
ϕ(0)=1

max
λ1≤λ≤λn

|ϕ(λ)| ≤ 2
(√κ− 1√

κ+ 1

)k
.

2the Chebyshev polynomial of the first kind are defined by Tk(cos(θ)) = cos(kθ), for θ ∈ [0, π].
3by definition, the equation is true for x = eiθ, thus it extends to any complex number.

50 CHAPTER 4. KRYLOV SUBSPACE METHODS

Remark 4.17. For the steepest gradient algorithm, we had

∥x(k)SG − x∗∥A ≤
(cond2(A)− 1

cond2(A) + 1

)k
∥x(0) − x∗∥A.

Asymptotically, the convergence rate obtained for the CG algorithm is much better than the
one for the steepest gradient, but still sensitive to an ill-conditioned matrix A.

Remark 4.18. We have proved that for 0 < a < b, we have

Tm

(a+ b

b− a

)
≥ 1

2

(√κ+ 1√
κ− 1

)
,

with κ = b
a .

In the case where A has clustered eigenvalues 0 < λ1 ≤ · · · ≤ λn−ℓ ≪ λn−ℓ+1 ≤ . . . , we
can improve the previous estimate by considering another relaxation of the min-max problem.
For k ≥ ℓ, we can choose ϕ ∈ Ck[X], ϕ(0) = 1 as ϕ(λ) = q(λ)ϕ̃(λ), where ϕ̃ is a polynomial
of degree at most k − ℓ with ϕ̃(0) = 1, and q(λ) =

∏n
i=n−ℓ+1(1 −

λ
λi
) i.e. the polynomial of

degree ℓ such that q(0) = 1 and q(λi) = 0 for n − ℓ + 1 ≤ i ≤ n. Now using that |q(λ)| ≤ 1
on [0, λn−ℓ+1], we have

min
ϕ∈Ck[X]
ϕ(0)=1

max
1≤i≤n

|ϕ(λi)| ≤ max
1≤i≤n

|q(λi)| min
ϕ̃∈Ck−ℓ[X]

ϕ̃(0)=1

max
1≤i≤n−ℓ

|ϕ̃(λi)|

≤ min
ϕ̃∈Ck−ℓ[X]

ϕ̃(0)=1

max
λ1≤λ≤λn−ℓ

|ϕ̃(λ)|

≤ 2


√

λn−ℓ

λ1
− 1√

λn−ℓ

λ1
+ 1

k−ℓ

.

The corresponding convergence rate is then

∥x(k) − x∗∥A ≤ 2


√

λn−ℓ

λ1
− 1√

λn−ℓ

λ1
+ 1

k−ℓ

∥x(0) − x∗∥A. (4.10)

As λn
λ1

≫ λn−ℓ

λ1
, the previous estimate is much better than (4.9). This explains the good

convergence properties of the CG algorithm in practice (see Figure 4.1).

4.2.4 Preconditioned conjugate gradient algorithm

It is often advised to use a preconditioner to solve Ax∗ = b to reduce the number of iter-
ations of the solver. A good preconditioner M ∈ Cn×n is an invertible matrix such that
cond2(M

−1A) ≪ cond2(A). Then solving M−1Ax∗ = M−1b is significantly easier than the
original system. In our case, even if M is Hermitian, positive-definite, M−1A is in general
not Hermitian. It is necessary to adapt the CG algorithm in order to incorporate the pre-
conditioner. If we assume that M is Hermitian, positive-definite, we can write the Cholesky

4.2. THE CONJUGATE GRADIENT ALGORITHM 51

Figure 4.1: CG convergence rate compared to various upper bounds (4.10)

decomposition of M = EE∗, where E ∈ Cn×n is a lower triangular matrix with positive
entries. Instead of solving M−1Ax∗ = M−1b, we can look at the symmetrised system

E−1AE−∗x̃∗ = E−1b (4.11)

Note that we have x∗ = E−∗x̃∗. For the preconditioned linear system (4.11), the CG algorithm
is the following (see Algorithm 4.4).

Algorithm 4.4 Transformed conjugate-gradient algorithm

function TCG(A, b, x̃(0), εtol, E)
p̃0 = r̃(0) = E−1b− E−1AE−∗x̃(0), k = 0
while ∥r̃(k)∥ > εtol do

k = k + 1

αk−1 =
∥r̃(k−1)∥2

⟨p̃k−1,E−1AE−∗p̃k−1⟩
x̃(k) = x̃(k−1) + αk−1p̃k−1

r̃(k) = r̃(k−1) − αk−1E
−1AE−∗p̃k−1

ωk = ∥r̃k∥2
∥r̃k−1∥2

p̃k = r̃(k) + ωkp̃k−1

end while
return E−∗x̃(k)

end function

It is possible to simplify Algorithm 4.4 and get rid of the Cholesky matrices E and E∗. To
do so, we are going to work with the variables x(k) = E−∗x̃(k) and r(k) = Er̃(k) and introduce
a new variable dk = E−∗p̃k. Note that since r̃(k) = E−1b − E−1AE−∗x̃(k), we have that
r(k) = b−AE−∗x̃(k) = b−Ax(k).

We now reexpress the quantities appearing in the transformed CG algorithm 4.4 in the
variables x(k), r(k) and dk:

• ∥r̃(k)∥2 = ⟨r̃(k), r̃(k)⟩ = ⟨E−1r(k), E−1r(k)⟩ = ⟨r(k), E−∗E−1r(k)⟩ = ⟨r(k),M−1r(k)⟩

52 CHAPTER 4. KRYLOV SUBSPACE METHODS

• x̃(k) = x̃(k−1) + αk−1p̃k−1 ⇔ x(k) = x(k−1) + αk−1E
−∗p̃k−1 = x(k−1) + αk−1dk−1

• r̃(k) = r̃(k−1) − αk−1E
−1AE−∗p̃k−1 ⇔ r(k) = r(k−1) − αk−1AE

−∗p̃k−1 = r(k−1) −
αk−1Adk−1

• p̃k = r̃(k) + ωkp̃k−1 ⇔ dk = E−∗r̃(k) + ωkdk−1 = M−1r(k) + ωkdk−1.

It is thus possible to rewrite Algorithm 4.4 without E or E∗.

Algorithm 4.5 Preconditioned conjugate-gradient algorithm

function PCG(A, b, x(0), εtol,M)
r(0) = b−Ax(0), d0 = M−1r(0), k = 0
while ∥r(k)∥ > εtol do

k = k + 1

αk−1 =
⟨r(k−1),M−1r(k−1)⟩

⟨dk−1Adk−1⟩
x(k) = x(k−1) + αk−1dk−1

r(k) = r(k−1) − αk−1Adk−1

ωk = ⟨r(k),M−1r(k)⟩
⟨r(k−1),M−1r(k−1)⟩

dk = M−1r(k) + ωkdk−1

end while
return x(k)

end function

Compared to the CG algorithm, we need an additional linear solve of the system My = r(k)

at each step of the preconditioned CG algorithm. Usually M has a simple structure (i.e.
diagonal or block-diagonal) such that the linear solve is cheap compared to the total cost of
the preconditioned CG algorithm.

Remark 4.19. We can check that the iterates that are produced by the preconditioned CG
algorithm satisfy:

• (r(k)) are M−1-orthogonal, i.e. ∀ i ̸= j, ⟨r(i),M−1r(j)⟩ = 0;

• (dk) are A-orthogonal, i.e. ∀ i ̸= j, ⟨di, Adj⟩ = 0.

4.2.5 Conjugate gradient algorithm in the XXIst century

The CG algorithm has become the reference method to solve linear problems with hermitian
positive-definite matrices, as it combines all the advantages of a numerical method. The
numerical convergence is fast, and is fully understood from a theoretical point of view. The
algorithm is numerically stable, and requires minimal memory. Finally it is straightforward
to use any preconditioner with CG.

4.3 GMRES

The generalised minimal residual (GMRES) algorithm is a popular iterative method to solve
the linear system Ax∗ = b when A is invertible and non-Hermitian.

4.3. GMRES 53

Contrary to the CG algorithm studied previously, GMRES does not have a short-term
recurrence. This stems from the fact that we do not have the simplification of the Arnoldi
algorithm for general matrices.

4.3.1 The mathematical characterisation and the minimisation problem

Recall that GMRES is mathematically characterised by{
x(k) = x(0) + z(k), z(k) ∈ Kk(A, r

(0))

r(k) = b−Ax(k) ⊥ AKk(A, r
(0)),

or equivalently
∥r(k)∥ = min

x∈x(0)+Kk(A,r(0))
∥b−Ax∥. (4.12)

Let (v1, . . . , vk) be the Arnoldi vectors forming an orthonormal basis of Kk(A, r
(0)) and satis-

fying 
AVk = Vk+1Hkk

v1 =
r(0)

∥r(0)∥
,

with

Vk = [v1, . . . , vk], and Hkk =


h11 . . . h1k

h21
. . .

...
.

hk,k−1 hkk
hk+1,k

 ∈ C(k+1)×k.

A vector z ∈ x(0) + Kk(A, r
(0)) can be expressed as z = x(0) + Vktk, for some tk ∈ Ck. The

minimisation problem (4.12) becomes

∥r(k)∥ = min
tk∈Ck

∥r(0) −AVktk∥

= min
tk∈Ck

∥∥r(0)∥Vk+1e1 − Vk+1Hkktk∥

= min
tk∈Ck

∥Vk+1(∥r(0)∥e1 −Hkktk)∥

= min
tk∈Ck

∥∥r(0)∥e1 −Hkktk∥, (4.13)

where we have used that Vk+1 has orthonormal columns. The last equation is a mean square
minimisation problem. The standard way to solve such a problem is to write the so-called QR
factorisation of Hkk.

4.3.2 The QR factorisation

Theorem 4.20. Let H ∈ Cm×n. Then there exist Q ∈ Cm×m unitary (i.e. Q∗Q = QQ∗ =
idm) and R ∈ Cm×n upper-triangular such that H = QR. Such a factorisation is called a QR
factorisation of H.

54 CHAPTER 4. KRYLOV SUBSPACE METHODS

Proof. The theorem is proved by induction on the dimension n.
For n = 1, H ∈ Cm×1, so we can pick Q = [H

∥H∥ Q⊥] where Q⊥ has columns which are

an orthonormal basis of {H}⊥. Then H = Q

[
∥H∥
0

]
.

Suppose that for any G ∈ Cm×n, we can write its QR factorisation and let H ∈ Cm×(n+1).
Write H = [H1 v], with H1 ∈ Cm×n and v ∈ Cm. By the induction hypothesis, we have
H1 = Q1R1 where Q1 ∈ Cm×m is unitary and R1 ∈ Cm×n is upper-triangular. Let

w = Q∗
1v ∈ Cm, and wn+1:m =

wn+1
...

wm

 = Q2R2,

where wn+1:m = Q2R2 is a QR factorisation of wn+1:m. Then setting Q = Q1

[
idn 0
0 Q2

]
and

R =

[
w1:n

R2
R1

]
, we check that

QR = Q1

[
(R1)1:n w1:n

0 Q2R2

]
= Q1

[
w1:n

wn+1:m
R1

]
=

[
Q1R1 Q1w

]
= H.

In general, the QR factorisation of a matrix H is not unique. The QR factorisation is a
useful tool to characterise the solution to a least-square problem.

Proposition 4.21. Let H ∈ Cm×n, with m ≥ n, be a full-rank matrix and H = QR a QR
factorisation of H. Let Q1 ∈ Cm×n and Q2 ∈ Cm×(m−n) such that Q =

[
Q1 Q2

]
. Let

R1 ∈ Cn×n be such that R =

[
R1

0

]
. Then R1 is an invertible matrix and for any b ∈ Cm then

min
x∈Cn

∥b−Hx∥ = ∥b−Hx∗∥ = ∥(Q∗b)n+1:m∥,

where x∗ = R−1
1 (Q∗b)1:n and (Q∗b)1:n ∈ Cn, (Q∗b)n+1:m ∈ Cm−n are such that Q∗b =[

(Q∗b)1:n
(Q∗b)n+1:m

]
.

Proof. Denote by (h1, . . . , hn) (resp. (q1, . . . , qm)) the columns of H (resp. of Q). Then we
want to show that for 1 ≤ k ≤ n, we have

Span(h1, . . . , hk) = Span(q1, . . . , qk), and rkk ̸= 0.

For all 1 ≤ k ≤ n, we have hk =
∑k

i=1 qirik, thus we have Span(h1, . . . , hk) ⊂ Span(q1, . . . , qk)
but (h1, . . . , hk) is a free family since H is full-rank. Hence we have Span(h1, . . . , hk) =
Span(q1, . . . , qk). If rkk = 0, this would mean that hk ∈ Span(q1, . . . , qk−1) = Span(h1, . . . , hk−1)
which is in contradiction with H being full-rank.

For the least-square problem, we have

min
x∈Cn

∥b−Hx∥ = min
x∈Cn

∥b−QRx∥ = min
x∈Cn

∥∥∥Q∗b−
[
R1

0

]
x
∥∥∥ = min

x∈Cn

∥∥∥Q∗b−
[
R1x
0

] ∥∥∥.

4.3. GMRES 55

We directly have that minx∈Cn

∥∥∥Q∗b−
[
R1x
0

] ∥∥∥ ≥ ∥(Q∗b)n+1:m∥ and the minimum is attained

for x∗ = R−1
1 (Q∗b)1:n.

Remark 4.22. With the notation of Proposition 4.21, we have H = Q1R1, which is called a
thin QR factorisation of H. For the QR factorisation, R has the same shape as H but for the
thin QR factorisation, it is Q which has the same shape as H. If H is full-rank, then one can
prove that the thin QR factorisation is unique.

4.3.3 The GMRES algorithm

We are now solving the minimisation (4.13) by using a QR factorisation of Hkk = QkRk,
Qk ∈ C(k+1)×(k+1) and Rk ∈ C(k+1)×k. In this case, using Proposition 4.21, Equation (4.13)
becomes

min
tk∈Ck

∥∥r(0)∥e1 −Hkktk∥ = min
tk∈Ck

∥∥r(0)∥e1 −QkRktk∥ = min
tk∈Ck

∥∥r(0)∥Q∗
ke1 −Rktk∥.

Rk is upper triangular, so we have Rk =

[
R̃k

0

]
and denoting ∥r(0)∥Q∗

ke1 =

[
gk

γk+1

]
with

gk ∈ Ck, γk+1 ∈ C, we see that tk ∈ Ck solves R̃ktk = gk. Moreover we have

∥r(k)∥ = min
tk∈Ck

∥∥r(0)∥e1 −Hkktk∥ = |γk+1|. (4.14)

It remains to implement efficiently a QR factorisation of Hkk. To this end, we are going to
use the fact that Hkk is an upper-Hessenberg matrix and that we can do a simple update of
the QR factorisation of Hk−1,k−1. Indeed we have

Hkk =

[
Hk−1,k−1 h(k)

0 hk+1,k

]
=

[
Qk−1Rk−1 h(k)

0 hk+1,k

]
,

where hk+1,k ∈ R (see Proposition 4.8) and h(k) ∈ Ck. Consider Qk defined by

Qk =

[
Qk−1 0
0 1

]
Ωk, (4.15)

where Ωk ∈ C(k+1)×(k+1) is some unitary matrix fixed later. Then we have

Ω∗
kQ

∗
kHkk = Ω∗

k

[
Rk−1 Q∗

k−1h
(k)

0 hk+1,k

]
.

We simply need Ω∗
k to cancel the (k+1, k) entry of the above matrix. Let h̃(k) = Q∗

k−1h
(k) ∈ Ck,

and let

Ω∗
k =

 c∗k sk
−sk ck,

idk−1

 (4.16)

with

c∗k =
(h̃

(k)
k)∗√

|h(k)k |2 + h2k+1,k

, and sk =
hk+1,k√

|h(k)k |2 + h2k+1,k

. (4.17)

56 CHAPTER 4. KRYLOV SUBSPACE METHODS

By a matrix multiplication, we can check that Rk = Ω∗
kQ

∗
kHkk is upper triangular, and Rk is

given by

Rk =

 h̃
(k)
1:k−1

1
0 0

Rk−1

 ∈ C(k+1)×k. (4.18)

We are now in position to write the GMRES algorithm 4.6.

Algorithm 4.6 GMRES

function GMRES(A, b, x(0), εtol)
r(0) = b−Ax(0), k = 0
while ∥r(k)∥ > εtol do

k = k + 1
Compute vk of the Arnoldi algorithm 4.1 for A with v = r(0)

Update Qk according to Eq. (4.15), (4.16) and (4.17)

Compute
[

gk
γk+1

]
= ∥r(0)∥Q∗

ke1

Set ∥r(k)∥ = |γk+1|
end while

Compute tk = R̃−1
k gk, where Rk =

[
R̃k

0

]
and Rk given by Eq. (4.18)

return x(0) + Vktk
end function

Note that in GMRES, only the last approximation x(k) to the solution x∗ to the linear
equation is computed. Indeed, at each iteration, we just need to estimate the residual which
is given by Equation (4.14). Concerning the cost of GMRES, at each step, one step of Arnoldi
algorithm has to be performed, which costs one matrix-vector multiplication, and k scalar
products. The matrix Qk needs to be updated, but this cost is negligeable. However, in terms
of storage cost, all the Arnoldi vectors (v1, . . . , vk) have to be kept for each iteration. This is a
serious limitation to the algorithm and in practice, a full GMRES by keeping all the Arnoldi
vectors is not advisable, especially if the convergence is slow.

4.3.4 Restarted GMRES

The idea is to limit the number of Arnoldi vectors to K and restart a GMRES run from the
latest GMRES iteration.

4.3. GMRES 57

Algorithm 4.7 Restarted GMRES(K)

function GMRES(A, b, x(0), εtol,K)
r(0) = b−Ax(0)

while ∥r(0)∥ > εtol do
Compute (v1, . . . , vK) the Arnoldi vectors of Algorithm 4.1 for A with v = r(0)

Update QK according to Eq. (4.15),(4.16) and (4.17)

Compute
[

gK
γK+1

]
= ∥r(0)∥Q∗

Ke1

Set ∥r(0)∥ = |γK+1|

Compute tK = R̃−1
K gK , where RK =

[
R̃K

0

]
and RK given by Eq. (4.18)

x(0) = x(0) + VKtK
end while
return x(0)

end function

The storage cost of the restarted GMRES scales as the number of Arnoldi vectors stored
at each step of the algorithm. Note that contrary to GMRES, we have no guarantee that
the algorithm converges after a finite number of iterations, although the residuals are still
nonincreasing, due to the mathematical characterisation of GMRES (4.3).

Remark 4.23. Let A ∈ Cn×n be given by

A =


0 . . . 0 α0

1
. . .

...
...

. . . 0 αn−2

1 αn−1

 , (4.19)

where (α0, . . . , αn−1) ∈ Cn. The characteristic polynomial of A is given by P (λ) = det(λ id−A) =
λn−

∑n−1
k=0 αkλ

k, thus the coefficients can be chosen to have any eigenvalue distribution. Then
for any b ∈ Cn, the restarted GMRES with x(0) = A−1(b − e1) does not converge, except if
K = n. In fact, the residual is constant r(k) = r(0) for k ≤ n − 1. This shows that there is
no hope to give an accurate characterisation of the convergence of GMRES solely based on the
spectrum of the matrix.

In practice, it is customary to take K = 20 and in general, a larger K improves the
convergence of the restarted GMRES algorithm.

Remark 4.24. The latter comment is a general advice but counterexamples exist to this rule of

thumb. Let A =

1 1 1
0 1 3
0 0 1

 and b =

 2
−4
1

, then for x(0) =

00
0

, restarted GMRES converges

after three steps for K = 1 but does not converge for K = 2.

58 CHAPTER 4. KRYLOV SUBSPACE METHODS

4.3.5 Convergence of GMRES

Convergence results on GMRES are less powerful than for the CG algorithm. An attempt
consists in following the same steps as in the convergence estimate of the CG algorithm:

∥r(k)∥ = min
z∈x(0)+Kk(A,r(0))

∥b−Az∥

= min
z̃∈Kk(A,r(0))

∥r(0) −Az̃∥

= min
ϕ∈Ck[X]
ϕ(0)=1

∥ϕ(A)r(0)∥.

Since A is no longer Hermitian, we have to resort to another decomposition of the matrix
A, namely the Jordan decomposition which is recalled in the next proposition.

Proposition 4.25. Let A ∈ Cn×n and (λ1, . . . , λr) be the distinct eigenvalues of A. For

1 ≤ ℓ ≤ r, let Jλℓ
=


λℓ 1

.
. . . 1

λℓ

 ∈ Cnℓ×nℓ be the Jordan blocks, where
∑r

ℓ=1 nℓ = n.

Then there exists Y ∈ Cn×n invertible such that

A = Y

Jλ1

. . .
Jλr

Y −1. (4.20)

This is the Jordan decomposition of A and if the columns of Y are of norm 1, it is unique up
to the permutations of the Jordan blocks and rotations in the Jordan blocks.

Using the Jordan decomposition of A, we have

∥r(k)∥ = min
ϕ∈Ck[X]
ϕ(0)=1

∥∥∥Y
ϕ(Jλ1)

. . .
ϕ(Jλr)

Y −1r(0)
∥∥∥

≤ ∥Y ∥∥Y −1∥∥r(0)∥ min
ϕ∈Ck[X]
ϕ(0)=1

max
1≤ℓ≤r

∥ϕ(Jλℓ
)∥.

Proposition 4.26. Let A = Y

Jλ1

. . .
Jλr

Y −1 be a Jordan decomposition of A, and

r(k) be the k-th residual of the GMRES algorithm 4.6. Then

∥r(k)∥ ≤ ∥Y ∥∥Y −1∥∥r(0)∥ min
ϕ∈Ck[X]
ϕ(0)=1

max
1≤ℓ≤r

∥ϕ(Jλℓ
)∥.

If Y is ill-conditioned, the bound given is meaningless. Consider the matrix A = tridiag(−α, α,− 1
α) ∈

Rn×n, with α ∈ R, α > 1. The eigenvalues of A are α − 2 cos
(jπ
n+1

)
for 1 ≤ j ≤ n and the

associated eigenvectors are yj =
Dzj

∥Dzj∥ for 1 ≤ j ≤ n where (zj) is some orthonormal basis of

Rn and D = diag(α, . . . , αn). The conditioning of Y then scales as αn, but ∥r(k)∥ ≤ ∥r(0)∥.

4.3. GMRES 59

4.3.6 Beyond GMRES?

The bottleneck of GMRES is the Arnoldi algorithm and in particular, the absence of a short
recurrence in the Arnoldi algorithm for a general matrix A.

A natural question to ask is whether the Arnoldi algorithm is a good starting point to
derive a short-term iterative linear solver. In other words, for a given matrix A, is there an
(s+ 1)-term recurrence of the form

x(k) = x(k−1) + αk−1p
(k−1)

p(k) = Ap(k−1) −
s−2∑
j=0

βk−1,jp
(k−1−j),

(4.21)

with x(0) ∈ Cn and p(0) = r(0) = b − Ax(0) which stops after m ≤ n iterations at the exact
solution x∗ to Ax∗ = b, for a well-chosen set of coefficients (αk)0≤k≤m−1 and (βk−1,j)0≤k≤m−1

0≤j≤s−2
?

By Eq. (4.21), the error ek = x(k)−x∗ satisfies ek = ek−1+αk−1p
(k−1). Hence by iteration,

ek ∈ e0 + Span(p(0), . . . , p(k−1)).

The error ek is thus minimised when ek ⊥ Span(p(0), . . . , p(k−1)), thus ⟨ek, p(j)⟩ = 0 for all
0 ≤ j ≤ k − 1. This gives in particular for j = k − 1

αk−1 =
⟨p(k−1), ek−1⟩
⟨p(k−1), p(k−1)⟩

,

and for 0 ≤ j ≤ k − 2, we have

0 = ⟨p(j), ek⟩ = ⟨p(j), ek−1⟩+ αk−1⟨p(j), p(k−1)⟩ = αk−1⟨p(j), p(k−1)⟩.

This means that if αk−1 ̸= 0, we can enforce the orthogonality of the vectors (pk−1−j) for
0 ≤ j ≤ s− 2 by setting the coefficients (βk−1,j)0≤k≤m−1

0≤j≤s−2
such thatt

βk−1,j =
⟨p(k−1−j), Ap(k−1)⟩
⟨p(k−1−j), p(k−1−j)⟩

.

This motivates to restrict the search of a short-term iterative linear solver to the following
class of sequences.

Definition 4.27. The sequences (x(k)), (p(k)) defined by Equation (4.21) such that for any
b ∈ Cn, there is m ≤ n such that x(m) solves Ax(m) = b and ⟨p(k−1−j), p(k)⟩ = 0 for 0 ≤ k ≤
m, 0 ≤ j ≤ s− 2 are called an (s+ 1)-term CG method.

Remark 4.28. Notice that the vectors (p(k))0≤k≤m are not orthogonal, hence they are colinear
with the Arnoldi vectors defined in Algorithm 4.1.

We have a characterisation of the class of matrices which have an (s+1)-term CG method.

Theorem 4.29 (Faber, Manteuffel (1984)). An (s+1)-term CG method exists for the matrix
A if and only if either

60 CHAPTER 4. KRYLOV SUBSPACE METHODS

1. the minimal polynomial of A has degree less than s;

2. A∗ is a polynomial of degree less than s− 2 in A.

Notice that for s+ 1 = 3 and assuming additionally that A is Hermitian positive-definite,
a small modification of the CG algorithm 4.3 would be a solution to the Faber-Manteuffel
theorem.

Proof. We are only going to prove the converse, as the proof of the implication is quite involved.
First, assume that the minimal polynomial of A has degree less than s. Let (x(k)), (p(k))

be the sequences defined by Eq. (4.21). By induction, we see that for all 1 ≤ k ≤ s,
(p(0), . . . , p(k−1)) is a basis of Span(r(0), Ar(0), . . . , Ak−1r(0)). By induction, we also have that
x(k) = x(0) +

∑k−1
j=0 αjp

(j), thus we can choose (αj)0≤j≤s−1 and (βk,j)0≤k≤s−1
0≤j≤s−2

such that

∥b−Ax(k)∥ = min
z(k)∈Span(p(0),...,p(k−1))

∥r(0) −Az(k)∥

p(k) ⊥ Span(p(k−s+1), . . . , p(k−1)).

In particular for k = s, we have that

∥b−Ax(s)∥ = min
z(s)∈Span(p(0),...,p(s−1))

∥r(0) −Az(s)∥

= min
ϕ∈Cs−1[X]

∥r(0) − ϕ(A)r(0)∥

= min
ϕ∈Cs[X]
ϕ(0)=1

∥ϕ(A)r(0)∥.

Choosing ϕ as the minimal polynomial such that ϕ(0) = 1 shows that Ax(s) = b.

Now assume that A∗ is a polynomial of degree less than s− 2 of A. We will first prove by
induction that if (p(j))0≤j≤k are orthogonal vectors, then (p(j))0≤j≤k+1 are also orthogonal.

For the initialisation, we know that for k ≤ s− 1, choosing (βk−1,j)0≤j≤s−2 such that

βk−1,j =
⟨p(j), Ap(k−1)⟩

⟨p(k−1−j), p(k−1−j)⟩

ensures that ⟨p(i), p(j)⟩ = 0 for 0 ≤ i ̸= j ≤ s− 1.
For the induction step, let us assume that (p(j))0≤j≤k are orthogonal vectors. We already

know that by setting (βk,j)0≤j≤s−2 such that

βk,j =
⟨p(k−j), Ap(k)⟩
⟨p(k−j), p(k−j)⟩

,

we have that p(k+1) ⊥ Span(p(k−s+2), . . . , p(k)). For i ≤ k − s+ 1, we have from Eq. (4.21)

⟨p(i), p(k+1)⟩ = ⟨p(i), Ap(k)⟩ −
s−2∑
j=0

βk,j⟨p(i), p(k−j)⟩.

4.3. GMRES 61

By the induction assumption, ⟨p(i), p(k−j)⟩ = 0 for 0 ≤ j ≤ s − 2. Now ⟨p(i), Ap(k)⟩ =
⟨A∗p(i), p(k)⟩. By assumption, A∗ = qs−2(A) for some polynomial qs−2 ∈ Cs−2[X]. Thus
A∗p(i) = qs−2(A)p(i) ∈ Span(p(i), . . . , p(i+s−2)). But i+s−2 ≤ k−1, thus using the induction
assumption ⟨qs−2(A)p

(i), p(k)⟩ = 0. This shows that ⟨p(i), p(k+1)⟩ = 0.
Notice that Span(p(0), . . . , p(k)) ⊂ Span(r(0), . . . , Akr(0)) but by orthogonality of the vec-

tors (p(0), . . . , p(k)), we deduce that Span(p(0), . . . , p(k)) = Span(r(0), . . . , Akr(0)). Since x(k) =
x(0) +

∑k−1
i=0 αip

(i), by selecting αi = −⟨p(i), x(0) − x∗⟩, we have that (x(k)) converges to x∗ in
at most n steps. This finishes the proof.

The Faber-Manteuffel theorem essentially states that for a general matrix A, there is no
equivalent to the conjugate-gradient algorithm solely based on the Krylov space Kk(A, r

(0)).
This means that we need to look for another construction to define a short-term recurrence
for the iterative method.

Going back to the essence of the conjugate-gradient and GMRES methods, it is reason-
able to look for alternatives to the Arnoldi/Lanczos algorithms that would give a short-term
recurrence for any matrix.

One way to achieve such a short recurrence is to relax the orthogonality constraint on
the Arnoldi vectors (v1, . . . , vk) while remaining a basis of Kk(A, v). The new constraint is
to build a family of vectors (w1, . . . , wk) which is a basis of Kk(A

∗, w) and also a dual family
to (v1, . . . , vk), i.e. ∀ 1 ≤ i, j ≤ k, ⟨wi, vj⟩ = δij . This gives the non-Hermitian Lanczos
algorithm 4.8.

Algorithm 4.8 Non-Hermitian Lanczos algorithm
function NonHermitianLanczos(A, v, w, k)

v0 = w0 = 0, β1 = δ1 = 0
v1 =

v
∥v∥ , w1 =

w
⟨v1,w⟩

for j = 1, . . . , k do
γj = ⟨wj , Avj⟩
v̂j+1 = Avj − γjvj − βjvj−1

ŵj+1 = A∗wj − γ∗jwj − δjwj−1

δj+1 = ∥v̂j+1∥
if δj+1 = 0 then

Stop
end if
βj+1 = ⟨vj+1, ŵj+1⟩
if βj+1 = 0 then

Stop
end if
wj+1 =

ŵj+1

βj+1

end for
return (v1, . . . , vk), (w1, . . . , wk)

end function

For the non-Hermitian Lanczos vectors, we have the following properties.

Proposition 4.30. If there is no breakdown in Algorithm 4.8, i.e. for all 1 ≤ j ≤ k − 1

62 CHAPTER 4. KRYLOV SUBSPACE METHODS

v̂j+1 ̸= 0, ŵj+1 ̸= 0, βj+1 ̸= 0, then we have
AVk = VkTk + δk+1vk+1e

T
k

A∗Wk = WkTk + βk+1wk+1e
T
k

W ∗
kAVk = Tk

W ∗
kVk = idk,

(4.22)

where Vk =
[
v1 . . . vk

]
, Wk =

[
w1 . . . wk

]
and Tk =


γ1 β2

δ2
.
. βk

δk γk

.

It is possible to derive an iterative method as a projection process, using the non-Hermitian
Lanczos to define a basis for the Krylov subspace. This yields the biconjugate gradient method
(BiCG) which by construction enjoys a short recurrence but does not preserve the relations
between the search space and the constraint space for the residuals. The non-Hermitian
Lanczos algorithm has two types of breakdowns:

• when v̂j+1 = 0 or ŵj+1 = 0: this is related to a stagnation of the corresponding subspace,
which means that we have reached convergence in the projection process;

• when v̂j+1 ̸= 0, ŵj+1 ̸= 0 but ⟨v̂j+1, ŵj+1⟩ = 0: this is called a serious breakdown
as we do not have a stable Krylov subspace under A, and so we do not have reached
convergence in the iterative algorithm. This can happen for well-conditioned matrices
which indicate that it can happen generically.

Remark 4.31. Let A =

 5 1 −1
−5 0 1
1 0 1

, v1 =

 0.6
−1.4
0.3

 and w1 =

 0.6
0.3
−0.1

. The eigenvalues of

A are 1, 2 and 3 and v2 = 1
3

 1.5
−2.5
1.5

, w2 = 1
3

 1.8
0.6
−0.8

. The vectors v2 and w2 are orthogonal

although the matrix A is well-conditioned.

4.3.7 GMRES in the XXIst century

GMRES has become the method of choice for solving nonhermitian linear problems. However,
compared to CG, GMRES suffer from some drawbacks:

• theoretically, there is no fully satisfying explanation of the convergence behaviour of
GMRES as the upper bounds are often much more pessimistic than what is actually
observed;

• in practice, one would often use restarted GMRES (or one of its variants), but again,
the behaviour of the algorithm with respect to the restart parameter is rather unclear.

Excellent references on that topic are the monograph [LS12] or the book by Y. Saad [Saa03].

Chapter 5

Eigenvalue problems

In this chapter, we are interested in the symmetric eigenvalue problem

Solve for (µ, x) ∈ R×
(
Rn \ {0}

)
, Ax = µx, (5.1)

where A is assumed symmetric.
Contrary to the linear solve case, where there is an explicit algorithm to solve the linear

problem Ax∗ = b, for n ≥ 5, by the Abel-Ruffini theorem, there is no algorithm that computes
the eigenvalues of A that stops after a finite number of operations. Otherwise, it would be
possible to find the roots of a polynomial of degree n within a finite number of operations.
This means that the methods to compute the eigenvalues of a matrix have to be iterative.
We start with algorithms which approximate the eigenvalues of a matrix using single vector
iterations.

5.1 Single vector iteration methods

5.1.1 Power iteration

Suppose that the eigenvalues (µi)1≤i≤n of the matrix A are ordered such that

|µn| > |µn−1| ≥ · · · ≥ |µ1|. (5.2)

For a starting vector x ∈ Rn, consider the sequences (y(k)) and (λ(k)) defined by y(0) = x
∥x∥

and λ(0) = ⟨y(0), Ay(0)⟩ and for m ≥ 1
ŷ(m) = Ay(m−1)

y(m) =
ŷ(m)

∥ŷ(m)∥
λ(m) = ⟨y(m), Ay(m)⟩.

(5.3)

By iteration, we see that y(m) = Amx
∥Amx∥ .

Expanding x in the basis of the eigenvectors (qi)1≤i≤n of A, we have

x =
n∑

i=1

αiqi, αi ∈ R, (5.4)

63

64 CHAPTER 5. EIGENVALUE PROBLEMS

thus assuming that αn ̸= 0

Amx = αnµ
m
n

(
qn +

n−1∑
i=1

αi

αn

(µi

µn

)m
qi

)
. (5.5)

Since
∣∣ µi

µn

∣∣ < 1 for 1 ≤ i ≤ n − 1, Amx tends to be aligned with the vector qn i.e. the
eigenvector associated to the eigenvalue with the largest magnitude.

Algorithm 5.1 Power method
function PowerMethod(A, x, εtol)

y(0) = x
∥x∥

λ(0) = ⟨y(0), Ay(0)⟩
m = 0
while ∥Ay(m) − λ(m)y(m)∥ > εtol do

m = m+ 1
ŷ(m) = Ay(m−1)

y(m) = ŷ(m)

∥ŷ(m)∥
λ(m) = ⟨y(m), Ay(m)⟩

end while
return (λ(m), y(m))

end function

Theorem 5.1 (Convergence of the power method). Let A ∈ Rn×n be a symmetric matrix.
Let (µi)1≤i≤n be its eigenvalues and (qi)1≤i≤n be the corresponding orthonormal eigenvectors.
Suppose that the eigenvalues satisfy Eq. (5.2) and µn > 0. Let x ∈ Rn such that ⟨x, qn⟩ > 0.
Then there exists a constant C > 0 such that for all m ≥ 1

∥y(m) − qn∥ ≤ C
∣∣∣µn−1

µn

∣∣∣m, (5.6)

and

|λ(m) − µn| ≤ C
∣∣∣µn−1

µn

∣∣∣2m. (5.7)

Proof. From Eq. (5.5), we have

∥Amx∥2 =
∥∥∥αnµ

m
n

(
qn +

n−1∑
i=1

αi

αn

(µi

µn

)m
qi

)∥∥∥2
= |αnµ

m
n |2

(
1 +

n−1∑
i=1

∣∣∣ αi

αn

(µi

µn

)m∣∣∣2)
= |αnµ

m
n |2

(
1 +O

(µn−1

µn

)2m)
.

5.1. SINGLE VECTOR ITERATION METHODS 65

Thus we have

∥qn − y(m)∥ =
∥∥qn − Amx

∥Amx∥
∥∥

≤ ∥(∥Amx∥ − αnµ
m
n)qn∥

∥Amx∥
+

∥∥∥∥∥ n−1∑
i=1

αiµ
m
i qi

∥∥∥∥∥
∥Amx∥

≤ C
∣∣∣µn−1

µn

∣∣∣m,

for some positive constant C independent of m.
For λ(m), we first notice that ∥qn − y(m)∥2 = 2− 2⟨qn, y(m)⟩. Thus we have

⟨qn − y(m), A(qn − y(m))⟩ = ⟨qn, Aqn⟩ − 2⟨y(m), Aqn⟩+ ⟨y(m), Ay(m)⟩
= µn − 2µn⟨y(m), qn⟩+ λ(m)

= λ(m) − µn − 2µn(1− ⟨y(m), qn⟩)
= λ(m) − µn − µn∥y(m) − qn∥2.

We deduce the bound

|λ(m)−µn| ≤ |µn|∥y(m)− qn∥2+ |⟨qn−y(m), A(qn−y(m))⟩| ≤ 2|µn|∥y(m)− qn∥2 ≤ C
∣∣∣µn−1

µn

∣∣∣2m.

(5.8)

Notice that the eigenvalue converges at a rate which is twice faster than the eigenvector.
This is a result which also applies in general.

Remark 5.2. The power iteration also converges when A is diagonalisable (not necessarily in
an orthonormal basis) under the assumption Eq. (5.2) on the eigenvalues.

The convergence of the power iteration is sensitive to an eigenvalue that is close (in mag-
nitude) to the dominant one µn. In particular if µn−1 = µn(1− ε) for ε > 0, then

µn−1

µn
= 1− ε. (5.9)

The convergence rate of the power iteration method in that case can be written

∥y(m) − qn∥ ≤ C(1− ε)m and |λ(m) − µn| ≤ C(1− ε)2m.

5.1.2 Inverse power iteration

Assume now that the eigenvalues of A are ordered such that

0 < |µ1| < |µ2| ≤ · · · ≤ |µn|. (5.10)

Applying the power method to the matrix A−1 gives the following sequence
ŷ(m) = A−1y(m−1)

y(m) =
ŷ(m)

∥ŷ(m)∥
λ(m) = ⟨y(m), A−1y(m)⟩,

(5.11)

66 CHAPTER 5. EIGENVALUE PROBLEMS

where y(0) = x
∥x∥ and λ(0) = ⟨y(0), A−1y(0)⟩.

By Theorem 5.1, (λ(m), y(m)) converge to the eigenpair corresponding to the dominant
eigenvalue of A−1, thus (1

µ1
, q1).

The formulation in Eq. (5.11) is not interesting in practice as it would require the knowledge
of the inverse A. However, by introducing the appropriate intermediate variable, it is possible
to replace A−1 by linear solve at each step.

Algorithm 5.2 Inverse power method
function InversePowerMethod(A, x, εtol)

y(0) = x
∥x∥

x(0) solves Ax(0) = y(0)

λ(0) = ⟨y(0), x(0)⟩
m = 0
while ∥y(m) − λ(m)Ay(m)∥ > εtol do

m = m+ 1
y(m) = x(m−1)

∥x(m−1)∥
x(m) solves Ax(m) = y(m)

λ(m) = ⟨y(m), x(m)⟩
end while
return (1

λ(m) , y
(m))

end function

The sequence defined by Algorithm 5.2 is mathematically equivalent to applying the power
iteration to A−1 but requires only a linear solve per iteration of the while loop. We have by a
simple consequence of Theorem 5.1 the following convergence for the inverse power iteration
method.

Theorem 5.3. Let A ∈ Rn×n be an Hermitian matrix. Let (µi)1≤i≤n be its eigenvalues
and (qi)1≤i≤n be the corresponding orthonormal eigenvectors. Suppose that the eigenvalues
satisfy Eq. (5.10). Let x ∈ Rn such that ⟨x, q1⟩ > 0. Then there exists a constant C > 0 such
that for all m ≥ 1

∥y(m) − q1∥ ≤ C
∣∣∣µ1

µ2

∣∣∣m, (5.12)

and
|λ(m) − µ1| ≤ C

∣∣∣µ1

µ2

∣∣∣2m. (5.13)

Again the convergence of the inverse power method is slow if the ratio
∣∣∣µ1

µ2

∣∣∣ is close to 1.
In this case, if we have a good guess µ̃1 ̸= µ1 to the exact eigenvalue, we can apply the

inverse power method to the matrix A− µ̃1 idn which satisfies

|µ1 − µ̃1| ≪ |µ2 − µ̃1| ≤ · · · ≤ |µn − µ̃1|.

Hence the inverse power iteration converges much faster for A− µ̃1 than for A.

Remark 5.4. Shifting by σ ∈ R the matrix A can also be used to target a specific eigenvalue
µi of A.

Indeed let σ such that |µi − σ| < |µj − σ| for all j ̸= i. Then we have that the inverse
power iteration applied to the matrix A− σ id converges to the eigenvector qi of A.

5.2. KRYLOV METHODS 67

5.2 Krylov methods

We will assume here that A is Hermitian with eigenvalues

µ1 ≤ · · · ≤ µn. (5.14)

Inspired by the iterative solver case, we expect a Krylov method for linear solvers to con-
verge faster to the exact eigenvalue than a single vector iteration. In that case, the approximate
eigenvector is sought in a Krylov space Km+1(A, y). If we are interested in the largest eigen-
value µn, it is natural to start from the variational characterisation of the eigenvalue (see
Proposition 1.12)

µn = max
y∈Rn

y ̸=0

⟨y,Ay⟩
∥y∥2

,

and restrict the maximisation problem to the Krylov space Km+1(A, y)

λ(m) = max
y∈Km+1(A,y)

y ̸=0

⟨y,Ay⟩
∥y∥2

.

By the restriction, we necessarily have µn − λ(m) ≥ 0.
The Arnoldi/Lanczos algorithm (see Proposition 4.8), as A is symmetric, provides an

orthonormal basis (v1, . . . , vm+1) of Km+1(A, y) such that V T
m+1AVm+1 = Tm+1 where Vm+1 =[

v1, . . . , vm+1

]
∈ Rn×(m+1) and Tm+1 ∈ R(m+1)×(m+1) is tridiagonal. Using this basis, we can

write

λ(m) = max
y∈Km+1(A,y)

y ̸=0

⟨y,Ay⟩
∥y∥2

= max
t∈Rm+1

t̸=0

⟨Vm+1t, AVm+1t⟩
∥Vm+1t∥2

= max
t∈Rm+1

t̸=0

⟨t, V T
m+1AVm+1t⟩
∥t∥2

= max
t∈Rm+1

t̸=0

⟨t, Tm+1t⟩
∥t∥2

.

We deduce that λ(m) is simply the largest eigenvalue of Tm+1. Since Tm+1 is tridiagonal and
smaller than A, it is reasonable to expect efficient eigenvalue solvers for such matrices. Let
t(m+1) ∈ Rm+1 a normalised eigenvector associated to Tm+1t

(m+1) = λ(m)t(m+1), then the
approximate eigenpair using the Krylov subspace is (λ(m), Vm+1t

(m+1)). The corresponding
procedure called the iterative Arnoldi algorithm is summarised in the Algorithm 5.3.

Remark 5.5. In the iterative Arnoldi algorithm 5.3, we can by-pass the estimation of the
residual ∥Ay(m) − λ(m)y(m)∥ using that y(m) = Vmt(m) and that

Ay(m) − λ(m)y(m) = AVmt(m) − VmTmt(m) = −tm+1,mvm+1e
T
mt(m).

Thus ∥Ay(m)−λ(m)y(m)∥ = |tm+1,m||t(m)
m |. To avoid the computation of the largest eigenvalue

of Tm, it is also possible to just use the coefficient tm+1,m of the Arnoldi/Lanczos algorithm
in order to estimate the residual.

Theorem 5.6. Let A be a Hermitian matrix with eigenvalues µ1 ≤ · · · ≤ µn−1 < µn. Let qn be
an eigenvector associated to µn. Let (λ(m), y(m)) be the result of the iterative Arnoldi algorithm
for which=largest (Algorithm 5.3) starting with the vector y. Assume that ⟨qn, y⟩ ̸= 0.

68 CHAPTER 5. EIGENVALUE PROBLEMS

Algorithm 5.3 Iterative Arnoldi algorithm
function IterativeArnoldi(A, y, εtol; which = {largest, smallest})

y(0) = y
∥y∥

λ(0) = ⟨v(0), Av(0)⟩
m = 0
while ∥Ay(m) − λ(m)y(m)∥ > εtol do

m = m+ 1
Compute Vm ∈ Rn×m, Tm ∈ Rm×m of the Hermitian Lanczos algorithm 4.2
Compute the which eigenvalue λ(m) and the eigenvector t(m) of Hmm = V ∗

mAVm

y(m) = Vmt(m)

end while
return λ(m), y(m)

end function

Then there exists a constant C > 0 independent of m such that the error on the approximated
eigenvalue λ(m) given after m steps of the iterative Arnoldi algorithm is given by

0 ≤ µn − λ(m) ≤ C
µn − µ1

Tm

(
2µn−µn−1−µ1

µn−1−µ1

)2 ≤ 4C(µn − µ1)
(√κ− 1√

κ+ 1

)2m
, (5.15)

where Tm is the m-th Chebyshev polynomial of the first kind and κ = µn−µ1

µn−µn−1
.

Proof. The approximate eigenvalue λ(m) is characterised by

λ(m) = max
x∈Km+1(A,y),x ̸=0

⟨x,Ax⟩
⟨x, x⟩

,

hence

µn − λ(m) = min
x∈Km+1(A,y),x ̸=0

⟨x, (µn −A)x⟩
⟨x, x⟩

. (5.16)

Using that Km+1(A, y) = Km+1(µn − A, y) = {P (A)y, P ∈ Cm[X]} = {P (µn − A)y, P ∈
Cm[X]}, we have that

µn − λ(m) = min
0 ̸=P∈Cm[X]

⟨P (µn −A)y, (µn −A)P (µn −A)y⟩
⟨P (µn −A)y, P (µn −A)y⟩

. (5.17)

Expanding y in the orthonormal eigenvector basis, we have y =
∑n

i=1 αiqi, thus

µn − λ(m) = min
0 ̸=P∈Cm[X]

n−1∑
i=1

|αi(µn − µi)P (µn − µi)|2

n∑
i=1

|αiP (µn − µi)|2
. (5.18)

5.2. KRYLOV METHODS 69

We thus obtain the upper bound

µn − λ(m) ≤ (µn − µ1) min
0̸=P∈Cm[X]

n−1∑
i=1

|αiP (µn − µi)|2

n∑
i=1

|αiP (µn − µi)|2

≤ (µn − µ1) min
0̸=P∈Cm[X]

n−1∑
i=1

|αiP (µn − µi)|2

|αnP (0)|2

≤ (µn − µ1)

n−1∑
i=1

|αi|2

|αn|2
min

0̸=P∈Cm[X]
max

1≤i≤n−1

|P (µn − µi)|2

|P (0)|2
.

We can relax the min-max problem to

min
0̸=P∈Cm[X]

max
1≤i≤n−1

|P (µn − µi)|2

|P (0)|2
≤ min

P∈Cm[X]
P (0)=1

max
µn−µn−1≤µ≤µn−µ1

|P (µ)|2.

We recognise the same min-max problem that is solved by a shifted and rescaled Chebyshev
polynomial Tk (see Remark 4.18):

min
P∈Cm−1[X]

P (0)=1

max
µn−µn−1≤µ≤µn−µ1

|P (µ)|2 = 1

Tm−1

(
2µn−µn−1−µ1

µn−1−µ1

)2 ≤ 4
(√κ− 1√

κ+ 1

)2m
,

with κ = µn−µ1

µn−µn−1
.

Remark 5.7. The convergence of the Arnoldi process is also sensitive to µn−1 close to µn.
However, as in the linear solver case, the situation is better for the Krylov solver. Suppose
that µ1 ≪ µn and µn−1 = µn(1− ε) for some 1 ≫ ε > 0. Then we have

κ =
µn − µ1

µn − µn−1
=

1− µ1

µn

1− µn−1

µn

∼ 1

ε
.

Thus the convergence rate becomes
√
κ− 1√
κ+ 1

∼ 1−
√
ε

1 +
√
ε
∼ 1− 2

√
ε.

Compared to the power iteration case (5.9), we have gained a square root in the convergence
rate.

A similar estimate can be obtained for the lowest eigenvalue of the matrix A, provided
that we now assume a gap between µ1 and µ2, and that in the iterative Arnoldi algorithm,
the lowest eigenvalue is computed instead of the largest one.

Corollary 5.8. Let A be a Hermitian matrix with eigenvalues µ1 < µ2 ≤ · · · ≤ µn. Let q1 be
an eigenvector associated to µ1. Let (λ(m), y(m)) be the result of the iterative Arnoldi algorithm
which=smallest (Algorithm 5.3) starting with the vector y. Suppose that ⟨q1, y⟩ ≠ 0. Then

70 CHAPTER 5. EIGENVALUE PROBLEMS

there exists a constant C > 0 independent of m such that the error on the approximated
eigenvalue λ(m) given after m steps of the iterative Arnoldi algorithm is given by

0 ≤ λ(m) − µ1 ≤ C
µn − µ1

Tm

(
µn+µ2−2µ1

µn−µ2

)2 ≤ 4C(µn − µ1)
(√κ− 1√

κ+ 1

)2m
, (5.19)

where Tm is the m-th Chebyshev polynomial of the first kind and κ = µn−µ1

µ2−µ1
.

Proof. Apply Theorem 5.6 to the matrix −A.

Bibliography

[CG22] Gabriele Ciaramella and Martin J. Gander. Iterative Methods and Preconditioners for
Systems of Linear Equations. Fundamentals of Algorithms. Society for Industrial and
Applied Mathematics, January 2022.

[GL13] Gene Howard Golub and Charles F. Van Loan. Matrix Computations. JHU Press,
February 2013.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Other Titles
in Applied Mathematics. Society for Industrial and Applied Mathematics, January
2002.

[HJ13] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, second edition, 2013.

[LS12] Jörg Liesen and Zdenek Strakos. Krylov Subspace Methods: Principles and Analysis.
Oxford University Press, October 2012.

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, January 2003.

[Saa11] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, January 2011.

71

	Reminders on matrix analysis
	Vector and matrix norms
	Eigenvalues, eigenvectors, spectral radius

	Condition number
	Matrix factorisations
	Schur decomposition
	Eigenvalue decomposition
	Singular value decomposition

	Direct linear solvers
	Introduction
	Triangular systems
	Gaussian elimination
	LU decomposition
	Factorisation algorithm
	Partial pivoting
	Theoretical results regarding the LU factorisation
	Cholesky factorisation

	Stationary iterative methods
	Principle of stationary iterative methods
	Convergence of stationary iterative methods

	Classical iterative methods
	Jacobi method
	Gauss-Seidel method
	Successive over relaxation (SOR) method

	Richardson iteration
	Interpretation as a gradient descent method
	Steepest descent

	Stationary iterative methods in the XXIst century

	Krylov subspace methods
	Projection process
	Definition and well-posedness of the projection process
	Krylov subspace methods

	The conjugate gradient algorithm
	The Arnoldi algorithm
	The practical CG algorithm
	Convergence of the CG algorithm
	Preconditioned conjugate gradient algorithm
	Conjugate gradient algorithm in the XXIst century

	GMRES
	The mathematical characterisation and the minimisation problem
	The QR factorisation
	The GMRES algorithm
	Restarted GMRES
	Convergence of GMRES
	Beyond GMRES?
	GMRES in the XXIst century

	Eigenvalue problems
	Single vector iteration methods
	Power iteration
	Inverse power iteration

	Krylov methods

