
Sorbonne Université Année universitaire 2025–2026
Faculté des Sciences et Ingénierie Algorithmes d’hier et aujourd’hui
Master 2 Mathématiques de la Modélisation Méthodes de Krylov

Krylov methods

1 Conjugate-gradient algorithm

1.1 Steepest gradient descent and conjugate-gradient algorithms

In this exercise, we compare the steepest gradient descent with the conjugate-gradient
algorithm.

Algorithm 1 Steepest descent gradient
function SteepestDescent(A, b, εtol)

x = 0
p = b
while ∥p∥ > εtol do

α = ∥p∥2
⟨p,Ap⟩

x = x+ αp
p = p− αAp

end while
return x

end function

1. Implement the steepest gradient descent algorithm.

2. Implement the conjugate-gradient algorithm.

3. Test on Tx∗ = b where T ∈ Rn×n is the one-dimensional discrete Laplacian (i.e. the
tridiagonal matrix with Tii = 2 for 1 ≤ i ≤ n and Ti,i−1 = Ti−1,i = −1 for 2 ≤ i ≤ n),
and b is a random vector. Compare the speed of convergence of the steepest gradient
descent and the conjugate gradient for n = 1000.

4. Plot the error ∥x(k) − x∗∥T =
√

⟨x(k) − x∗, T (x(k) − x∗)⟩ for n = 1000 and x∗ com-

puted using the \ command in LinearAlgebra. Compare this error with 2
(√

κ−1√
κ+1

)k

with κ = λn

λ1
.

1

Algorithm 2 Conjugate-gradient algorithm

function CG(A, b, x(0), εtol)
p0 = r(0) = b− Ax(0), k = 0
while ∥r(k)∥ > εtol do

k = k + 1
αk−1 =

∥r(k−1)∥2
⟨pk−1Apk−1⟩

x(k) = x(k−1) + αk−1pk−1

r(k) = r(k−1) − αk−1Apk−1

ωk =
∥rk∥2

∥rk−1∥2

pk = r(k) + ωkpk−1

end while
return x(k)

end function

5. Add on the previous plot the curves 2
(√

κℓ−1√
κℓ+1

)k

with κℓ =
λn−ℓ

λ1
for different choices

of ℓ.

1.2 Preconditioned conjugate gradient algorithm

1. Implement the preconditioned conjugate gradient algorithm.

We will test the preconditioned conjugate gradient algorithm on the following problem−∆u+
(
x− 1

2

)2
u = f

u(0) = u(1) = 0.

We use a Fourier discretisation for the solution, i.e. we write the solution as u(x) =∑∞
k=1 uk sin(πkx), and we truncate the corresponding series to a level k ≤ N .
If f is sufficiently regular (for example smooth), we know that the truncation uN(x) =∑N

k=1 uk sin(πkx) is close to the solution u in the sense that ∥uN − u∥L2 = o(N−α) for any
α > 0 (i.e. the convergence is faster than any inverse polynomial).

To obtain an approximation of uN , we solve the following linear system

DNv + PNv = fN ,

where

• DN ∈ RN×N is the diagonal matrix DN = diag(π2, 22π2, . . . , N2π2)

• PN ∈ RN×N is the matrix such that for 1 ≤ k, ℓ ≤ N

(PN)kℓ =

∫ 1

0

sin(πkx) sin(πℓx)
(
x− 1

2

)2
dx =


1

12
if k = ℓ

(−1)k−ℓ + 1

2π2(k − ℓ)2
− (−1)k+ℓ + 1

2π2(k + ℓ)2
else.

2

• fN ∈ RN is the vector (fN)k =
∫ 1

0
f(x) sin(kπx) dx = 1−(−1)k

πk
, for 1 ≤ k ≤ N .

1. Implement the matrices DN , PN and fN .

2. Solve the linear system for N = [100, 200, 500, 1000, 2000] using the conjugate-gradient
algorithm with εtol = 10−6.

3. Write a function value(v,x) that takes a vector v ∈ RN and a scalar x and that
returns

∑N
k=1 vk sin(πkx). Check that you obtain a similar plot than below

4. Plot the number of iterations of the conjugate-gradient algorithm to reach this accu-
racy.

5. Use the preconditioned conjugate-gradient algorithm with M = DN and plot the
number of iterations for the same values of N as in the previous question and with
εtol = 10−6.

1.3 Inexact iterations

Iterative methods only require to define the matrix vector product Av instead of having
to assemble the full matrix A.

In numerous applications, it is sometimes too costly to have the matrix vector product
Av up to machine precision. In these cases, instead of computing Av, we have Av + ε
where ε is the error when computing Av.

The academic example that will be explored here is the discretisation using finite-
differences of the problem{

(−∆+ x2 + (−∆+ 1)−1)u = f, in [−L,L]

u(L) = u(−L) = 0.

In the following, we will pick L = 5 and f(x) = exp(−x2).
The discretised equation is then

(−∆N + VN + (−∆N + IN)
−1)uN = fN , (1)

where

3

• −∆N is the tridiagonal matrix (−∆N)ii =
(N+1)2

2L2 for 1 ≤ i ≤ N and (−∆N)i,i+1 =
(N+1)2

4L2 for 1 ≤ i ≤ N − 1;

• VN is the diagonal matrix with entries ((−L + h)2, (−L + 2h)2, . . . , (L − h)2) with
h = 2L

N+1
;

• fN is the diagonal matrix with entries (exp(−(−L+h)2), exp(−(−L+2h)2), . . . , exp(−(L−
h)2)) with h = 2L

N+1
.

We want to solve Eq. (1) using an iterative method, the issue is that we do not have
access to (−∆N+I)−1, hence each matrix-vector multiplication with (−∆N+VN+(−∆N+
IN)

−1) requires to solve a linear system with −∆N + I. This last linear system is solved
using also an iterative method.

1. Let A ∈ RN×N be a symmetric positive-definite matrix. Consider the Richardson
iteration with fixed step size α > 0: for all k ≥ 0{

r(k+1) = r(k) − αAr(k)

x(k+1) = x(k) + αr(k),

where x(0) = 0 is some vector and r(0) = b. Show that (x(k)) converges to x∗ = A−1b
for any b if and only if 0 < α < 1

λmax
with λmax the largest eigenvalue of A.

2. Consider the inexact Richardson iteration with fixed step size α > 0: for all k ≥ 0{
r̃(k+1) = r̃(k) − α(Ar̃(k) + ε(k))

x(k+1) = x(k) + αr̃(k),

where x(0) = 0 and r̃(0) = b.

(a) Show that for any k ≥ 0, r̃(k) − r(k) = α
∑k

j=1(I − αA)k−jε(j−1).

(b) Deduce that if for j ≥ 0, ∥ε(j)∥ ≤ τ∥A∥, then ∥r̃(k) − r(k)∥ ≤ τ cond2(A).

(c) Suppose that A is well-conditioned. What can be said on the speed of conver-
gence of the exact and inexact methods?

3. We now go back to (1) and solve this equation using a conjugate-gradient method,
up to accuracy τ on the residual. We want to check that a fairly large tolerance τin
can be selected for solving approximately v(k) = (−∆N+I)−1u(k), where u(k) is the k-
th iteration of the conjugate-gradient algorithm. Write the algorithm for solving (1)
with the conjugate-gradient algorithm with tolerance τ , where the inner linear system
v(k) = (−∆N + I)−1u(k) is solved with a conjugate-gradient with tolerance τin.

4. Perform tests for N = 1000 and τin = 10kτ , for k = −3, . . . , 1, and compute the
exact residual at the end the inexact conjugate-gradient algorithm.

4

2 GMRES

2.1 GMRES and restarted GMRES

We recall the algorithms that will be needed here.

Algorithm 3 Arnoldi algorithm
function Arnoldi(A, v, k)

V=zeros(n,k+1)
H=zeros(k+1,k)
V [:, 1] = v

∥v∥
for j = 1, . . . , k do

for i = 1, . . . , j do
H[i, j] = ⟨V [:, i], AV [:, j]⟩1

end for
v̂j+1 = AV [:, j]−

∑j
i=1 H[i, j]V [:, i]

H[j + 1, j] = ∥v̂j+1∥
if hj+1,j ̸= 0 then

V [:, j + 1] =
v̂j+1

H[j+1,j]

end if
end for
return V,UpperHessenberg(H)

end function

We recall that in exact arithmetics, we have AV [:, 1 : k] = V H.

For H of type UpperHessenberg, some linear algebra methods are more efficient exploit-
ing the upper Hessenberg structure of the matrix. In particular, for H of size m × n with
m > n, q,r=qr(H) returns q which is a compact representation of an orthogonal matrix of
size m×m and r an upper triangular matrix of size n× n.

Algorithm 4 GMRES

function GMRES(A, b, x(0), K)
r(0) = b− Ax(0), k = 0
V,H =arnoldi(A, r(0), K)
q,r=qr(H)[
gK
γK+1

]
= ∥r(0)∥QT e1 ▷ e1 1st canonical vector of RK+1

t=r−1gK
∥r(K)∥ = |γK+1|
return x(0) + V [:, 1 : K]t, ∥r(K)∥

end function

5

1. Implement the Arnoldi algorithm arnoldi(A,v,k) that returns V,H where V is a
Matrix and H is UpperHessenberg.

2. Implement the version of the GMRES algorithm described above.

3. Test the GMRES algorithm for the linear system Tα,σx = b, where Tα,σ ∈ Rn×n is
the tridiagonal matrix tridiag(−α, σ + α,− 1

α
), for n = 50 and σ = α = 2.

4. For n = 200, σ = 2, α = 0.9, plot the convergence of the residuals as a function of
K.

5. For n = 200, σ = 1.1, α = 0.9, plot the convergence of the residuals as a function of
K.

6. Implement a restarted GMRES rgmres(A,b,x0,K,nb_restart), where K is the num-
ber of inner GMRES iterations and nb_restart the number of restarts.

7. Test it on the previous examples and plot the behaviour of the convergence with
respect to the restart parameter K.

2.2 Matrix-free problem

Let A,B ∈ RN×N , C ∈ RN×N . We consider the following equation on X ∈ RN×N

AX +XB = C. (2)

The left-hand side is a linear operator L acting on matrices RN×N , where L(X) = AX+XB
for X ∈ RN×N .

We want to solve this matrix equation using GMRES.

1. Implement matvec(A,X) which returns the matrix L(X) = AX +XB.

2. Adapt the function gmres such that it only requires the linear operator L and not
the full matrix.

3. Solve the equation (2) with A,B ∈ RN×N are of form 1√
N
randn(N,N)+IN and C ∈

RN×N is a random matrix with the restarted GMRES algorithm with different restart
parameters.

6

	Conjugate-gradient algorithm
	Steepest gradient descent and conjugate-gradient algorithms
	Preconditioned conjugate gradient algorithm
	Inexact iterations

	GMRES
	GMRES and restarted GMRES
	Matrix-free problem

