
Chapter 4

Krylov subspace methods

The iterative methods in the previous chapter are only using the knowledge of the previous
iterate to build the next one. Instead, it seems preferable to include more directions to improve
the approximation of the solution to the linear system Ax⇤ = b. This idea is formalised in
the framework of the projection processes and in this setting, we will see that the Krylov
subspace methods emerge as a natural candidate for these projection processes. The celebrated
conjugate gradient algorithm and GMRES are two instances of projection processes based on
Krylov subspaces.

4.1 Projection process

4.1.1 Definition and well-posedness of the projection process

Definition 4.1. Let Ck and Sk be k-dimensional linear subspaces of Cn, A 2 Cn⇥n and
x
(0)

2 Cn. We say that x(k) 2 Cn is the result of a projection process if there exists z
(k)

2 Sk

such that (
x
(k)

= x
(0)

+ z
(k)

r
(k)

= b�Ax
(k)

? Ck.

(4.1)

We say that the projection process is well-defined if x(k) exists and is uniquely defined.

We immediately notice that r
(k)

= r
(0)

� Az
(k), hence the condition can also be phrased

as Az
(k)

? r
(0)

+ Ck. The goal is to establish natural conditions on Ck and Sk under which
the projection process is well-defined. We will call Sk the search space and Ck the constraint
space.

Proposition 4.2. Let (c1, . . . , ck) (resp. (s1, . . . , sk)) be a basis of Ck (resp. Sk) and let
Ck = [c1; . . . ; ck] and Sk = [s1; . . . ; sk]. The projection process is well-defined if and only if
C

⇤
k
ASk is invertible.

Proof. By definition of the projection process, we can write x
(k)

= x
(0)

+ Sktk for a vector
tk 2 Ck. By the orthogonal constraint, we have r

(k)
? Ck, which means that C⇤

k
r
(k)

= 0. But
r
(k)

= r
(0)

� ASktk, thus we find that tk solves C
⇤
k
ASktk = C

⇤
k
r
(0). tk is uniquely defined for

all r(0) if and only if C⇤
k
ASk is invertible.

39

40 CHAPTER 4. KRYLOV SUBSPACE METHODS

Under the assumption that the projection process is well-defined, we can wonder whether
there are conditions such that the norm of the residual r(k) is bounded by the norm of the
initial one kr

(0)
k. We have

r
(k)

= r
(0)

�ASktk

= r
(0)

�ASk(C
⇤
k
ASk)

�1
C

⇤
k
r
(0)

=
�
id�ASk(C

⇤
k
ASk)

�1
C

⇤
k

�
r
(0)

.

By a simple calculation, we see that the operator Pk = ASk(C
⇤
k
ASk)

�1
C

⇤
k

is a projection. If
we require kr

(k)
k  kr

(0)
k for any r

(0), then we need Pk to be an orthogonal projector. In
that case, a possible choice is to take Ck = ASk.

If the matrix A is Hermitian positive-definite, we can also investigate whether there is
another choice by looking at the operator norm of the error x

(k)
� x⇤:

kx
(k)

� x⇤kA = kA
1/2

(x
(k)

� x⇤)k

= kA
1/2

(x
(0)

+ Sktk � x⇤)k

= kA
1/2

(x
(0)

+ Sk(C
⇤
k
ASk)

�1
C

⇤
k
r
(0)

� x⇤)k

= kA
1/2

(x
(0)

+ Sk(C
⇤
k
ASk)

�1
C

⇤
k
(Ax⇤ �Ax

(0)
)� x⇤)k

=
��� id�A

1/2
Sk(C

⇤
k
ASk)

�1
C

⇤
k
A

1/2
�
(A

1/2
x
(0)

�A
1/2

x⇤)
��.

The matrix Qk = A
1/2

Sk(C
⇤
k
ASk)

�1
C

⇤
k
A

1/2 is also a projection, which is not orthogonal in
general. Again a natural choice to ensure that Qk is an orthogonal projector is to set Ck = Sk.

In both cases, we will show that such choices for the constraint space lead to a well-defined
projection process.

Proposition 4.3. Suppose that A is invertible and let Sk be a k-dimensional subspace of Cn.
Then

1. if Ck = ASk, then the projection process is well-defined;

2. if A is Hermitian positive-definite and Ck = Sk, then the projection process is well-
defined.

Proof. 1. By Proposition 4.2, it is enough to check that C
⇤
k
ASk is invertible where Ck =

[c1; . . . ; ck] and Sk = [s1; . . . ; sk], for some basis (c1, . . . , ck) (resp. (s1, . . . , sk)) of Ck

(resp. Sk). Let y 2 Ck such that C
⇤
k
ASky = 0, then ASky ? Ck = ASk. Hence

ASky 2 ASk \ AS ?
k

, hence ASky = 0, thus y = 0 since A is invertible and Sk is
full-rank.

2. Again it suffices to check that C
⇤
k
ASk is invertible. Let y 2 Ck such that S

⇤
k
ASky = 0,

then y
⇤
S
⇤
k
ASky = 0, thus kSkykA = 0. Since Sk is full-rank, y = 0.

4.1.2 Krylov subspace methods

Looking at the residual or the norm of the error gives a condition on the constraint space. It
remains to see how to wisely pick the search space Sk.

4.1. PROJECTION PROCESS 41

Proposition 4.4. Suppose that the projection process (4.1) is well-defined. Assume that
r
(0)

2 Sk and ASk = Sk. Then we have r
(k)

= 0.

This means that the projection process gives the exact solution to the linear system Ax⇤ =
b, if Sk is a stable subspace under A.

Proof. By definition, we have r
(k)

= r
(0)

� Az
(k), where z

(k)
2 Sk. Since r

(0)
2 Sk and

ASk = Sk, r
(k)

2 ASk . Thus there is y 2 Ck such that r
(k)

= ASky. By definition,
r
(k)

? Ck, hence C
⇤
k
r
(k)

= 0, so C
⇤
k
ASky = 0. Because the projection process is well-defined,

this means that C
⇤
k
ASk is invertible hence y = 0 and r

(k)
= 0.

From the previous result, it seems reasonable to start with S1 = Span(r
(0)

) and work with
nested sequences spaces S1 ⇢ S2 ⇢ Since we want to find a stable subspace under A, it
is natural to introduce the Krylov subspaces.

Definition 4.5. Let v 2 Cn
, A 2 Cn⇥n and k 2 N. We call Kk(A, v) = Span(v,Av,A

2
v, . . . , A

k�1
v)

the Krylov subspace.

Proposition 4.6. With the notation of Definition 4.5, the following assertions are true

1. Kk(A, v) ⇢ Kk+1(A, v);

2. there is an integer d 2 N such that
(
Kd+1(A, v) = Kd(A, v)

Kj�1(A, v) 6= Kj(A, v), 81  j  d

The integer d is called the grade of v with respect to A;

3. for j  d, where d is the grade of v with respect to A, dimKj(A, v) = j;

4. if A is invertible and d is the grade of v with respect to A, then AKd(A, v) = Kd(A, v).

Thanks to the last property, the Krylov subspace Kk(A, r
(0)

) is a good candidate for the
search space of the projection process.

Proof. The first three properties are clear. We have AKd(A, v) ⇢ Kd+1(A, v) = Kd(A, v), so it
suffices to show that dimAKd(A, v) = dimKd(A, v) to have the equality. Let (↵i)1id 2 Cd

such that
P

d

i=1 ↵iA
i
v = 0. Since A is invertible, this means that

P
d�1
i=0 ↵i+1A

i
v = 0. But

(A
i
v)0id�1 is a basis of Kd(A, v), thus ↵i = 0 for all 1  i  d. Hence (A

i
v)1id is a free

family and dim AKd(A, v) = d = dim Kd(A, v).

From this study, we have established that Krylov subspaces are good candidates for a
search space for the projection process, as they guarantee a termination of the algorithm after
a finite number of steps. For the constraint space, based on the norm of the residual or the
error, we have identified two possible choices

1. Ck = ASk ;

2. Ck = Sk, if A is Hermitian positive-definite.

42 CHAPTER 4. KRYLOV SUBSPACE METHODS

In both cases, we have already proved that the projection process is well-defined. Taking Sk =

Kk(A, r
(0)

), the first choice yields the GMRES algorithm and the second choice the conjugate
gradient algorithm. We collect all these results and state the mathematical characterisation
of both algorithms in the next theorem.
Theorem 4.7. Let A 2 Cn⇥n be an invertible matrix, b 2 Cn and x⇤ 2 Cn be the solution to
Ax⇤ = b. Let x(0) 2 Cn and r

(0)
= b�Ax

(0). Assume that r(0) has a grade d � 1 with respect
to A. Let x(k) be defined by the projection process (4.1):

(
x
(k)

= x
(0)

+ z
(k) where z

(k)
2 Sk

r
(k)

= b�Ax
(k)

? Ck.

1. (Characterisation of the conjugate gradient algorithm) If A is Hermitian and positive-
definite, Sk = Ck = Kk(A, r

(0)
) for all 1  k  d, then the projection process is

well-defined for every 1  k  d and x
(d)

= x⇤. Moreover we have the following
characterisation for all iterates x

(k), 1  k  d

x
(k)

� x⇤ ?A Kk(A, r
(0)

), and kx
(k)

� x⇤kA = min
x2x(0)+Kk(A,r(0))

kx� x⇤kA. (4.2)

2. (Characterisation of GMRES) If Sk = Kk(A, r
(0)

) and Ck = AKk(A, r
(0)

), then the
projection process is well-defined for every 1  k  d and x

(d)
= x⇤. Moreover we have

the following characterisation for all residuals r
(k), 1  k  d

r
(k)

? AKk(A, r
(0)

), and kr
(k)

k = min
x2x(0)+Kk(A,r(0))

kb�Axk. (4.3)

Proof. The well-posedness is given by Proposition 4.2 and the termination of the projection
process is obtained by combining Proposition 4.4 and Proposition 4.6.

We now turn to the mathematical characterisations (4.2) and (4.3). These characterisa-
tions rely on rephrasing the orthogonalisation with respect to the constraint space Ck as an
orthogonal projection with respect to a new scalar product.

1. by definition of the projection process, we have r
(k)

= b�Ax
(k)

= A(x⇤ � x
(k)

) ? Ck =

Kk(A, r
(0)

). Hence we have, using that A defines a scalar product

x
(k)

� x⇤ ? AKk(A, r
(0)

) , x
(k)

� x⇤ ?A Kk(A, r
(0)

) , z
(k)

+ x
(0)

� x⇤ ?A Kk(A, r
(0)

).

Since z
(k) belongs to the subspace Sk = Kk(A, r

(0)
), we have that

kz
(k)

+ x
(0)

� x⇤kA = min
z2Kk(A,r(0))

kz + x
(0)

� x⇤kA,

which is exactly Equation (4.2).

2. by definition of the projection process, we have r
(k)

= b � Ax
(k)

? Ck = AKk(A, r
(0)

).
This is equivalent to A

⇤
A(x

(k)
� x⇤) ? Kk(A, r

(0)
). Since A

⇤
A defines a scalar product,

we have by the same reasoning as before

kx
(k)

� x⇤kA⇤A = min
z2Kk(A,r(0))

kz + x
(0)

� x⇤kA⇤A.

Using that for any y 2 Cn, kyk2
A⇤A = hy,A

⇤
Ayi = kAyk

2, we have (4.3).

The mathematical characterisations (4.2) and (4.3) will be central in establishing the
practical algorithms and the convergence rates of both algorithms.

4.2. THE CONJUGATE GRADIENT ALGORITHM 43

4.2 The conjugate gradient algorithm

The CG algorithm is an iterative method to solve Ax⇤ = b when A is Hermitian positive-
definite. This algorithm has several properties that make the algorithm efficient numerically:

• it has a short-term recurrence that makes it cheap to implement;

• it has a well-understood convergence behaviour based on the spectrum of the matrix A.

Such features are not shared with the GMRES algorithm as it will be exposed in Section 4.3.
In order to see that the CG algorithm has a short-term recurrence, it is natural to look at

the Gram-Schmidt process to build an orthogonal basis to Kk(A, r
(0)

). This is the goal of the
Arnoldi algorithm.

4.2.1 The Arnoldi algorithm

For this algorithm, we are not going to assume that A is Hermitian positive-definite. We
simply require A to be invertible. The Arnoldi algorithm is simply a Gram-Schmidt process
for Kk(A, v) = Span(v,Av, . . . , A

k�1
v).

Algorithm 4.1 Arnoldi algorithm
function Arnoldi(A, v, k)

v1 =
v

kvk
for j = 1, . . . , k do

for i = 1, . . . , j do
hij = hvi, Avji

1

end for
bvj+1 = Avj �

P
j

i=1 hijvi

hj+1,j = kbvj+1k

if hj+1,j 6= 0 then
vj+1 =

bvj+1

hj+1,j

end if
end for
return (v1, . . . , vk)

end function

The Arnoldi algorithm breaks down if in the course of the algorithm hj+1,j = 0. As we
are going to show, it does not happen if j  d where d is the grade of v with respect to A.

Proposition 4.8. Let v 2 Cn be of grade d with respect to A. Then the following assertions
are true

1. the Arnoldi algorithm 4.1 is well-posed for k  d (i.e. hj+1,j 6= 0 for j  d�1), moreover
for all j  d� 1, (v1, . . . , vj) is an orthonormal basis of Kj(A, v);

1the convention used is hx, yi =
Pn

i=1 x
⇤
i yi

44 CHAPTER 4. KRYLOV SUBSPACE METHODS

2. let Vk =
⇥
v1, . . . , vk

⇤
2 Cn⇥k and let Hkk =

2

66664

h11 h1k

h21
.
. . .

0 hk,k�1 hkk

3

77775
2 Ck⇥k then

AVk = VkHkk + hk+1,kvk+1e
T

k
, (4.4)

and
V

⇤
k
AVk = Hkk; (4.5)

3. if A is Hermitian, then Hkk is tridiagonal with real entries.

Remark 4.9. Matrices of the form

2

66664

h11 h1k

h21
.
. . .

0 hk,k�1 hkk

3

77775
2 Ck⇥k are called upper Hes-

senberg.

Proof. 1. by definition of the grade of v, (v,Av, . . . , A
j�1

v) is a basis of the Krylov space
Kj(A, v). Since (v1, . . . , vj) are obtained from a Gram-Schmidt process of (v,Av, . . . , Aj�1

v)

2. by definition of the algorithm, at each step j  d we have

Avj =

j+1X

i=1

hijvi = Vj+1

2

64
h1j
...

hj+1,j

3

75 .

Thus

AVk = Vk+1

2

6666664

h11 h12 . . . h1k

h21 h22 . . .

0 h32 . . .
...

... . . .
0 hk+1,k

3

7777775

= VkHkk + hk+1,kvk+1e
T

k
.

The second identity (4.5) follows from the orthogonality of (vj)1jk+1.

3. we have V
⇤
k
AVk = Hkk. The matrix Hkk is upper Hessenberg and V

⇤
k
AVk is Hermitian

if A is Hermitian, hence Hkk is tridiagonal. It remains to show that the entries of Hkk

are real. We have hj+1,j = kbvj+1k and hjj = hvj , Avji, thus the entries are real.

The Arnoldi algorithm has a remarkable simplification when A is Hermitian. It is not
necessary to reorthogonalise the vectors Avj against (vi)1ij�2, by the property above. The
resulting algorithm is called the Hermitian Lanczos algorithm.

The three-term recurrence in the Hermitian Lanczos algorithm is the reason why the CG
algorithm has also a short term recurrence.

4.2. THE CONJUGATE GRADIENT ALGORITHM 45

Algorithm 4.2 Hermitian Lanczos algorithm
function HermitianLanczos(A, v, k)

v1 =
v

kvk
for j = 1, . . . , k do

hjj = hvj , Avji

bvj+1 = Avj � hjjvj � hj�1,jvj�1

hj+1,j = kbvj+1k

if hj+1,j 6= 0 then
vj+1 =

bvj+1

hj+1,j

end if
end for
return (v1, . . . , vk)

end function

4.2.2 The practical CG algorithm

From the Hermitian Lanczos algorithm, we will at first derive the three-term recurrence of the
CG algorithm.

Let (v1, . . . , vd) be the family of orthonormal vectors obtained by the Hermitian Lanczos
algorithm applied to Kd(A, r

(0)
). We are going to exploit the tridiagonal structure of the

matrix Tk = V
⇤
k
AVk, k = 1, . . . , d.

Lemma 4.10. There exist (µ1, . . . , µd�1) 2 Rd�1 and (�1, . . . ,�d) 2 Rd such that for all 1 

k  d, we have Tk = Lk⇤kL
T

k
where Lk =

2

6664

1

µ1 1

.
µk�1 1

3

7775
and ⇤k = diag(�1, . . . ,�k).

Proof. The matrix Tk is tridiagonal and positive-definite, so it has a unique LU factorisation
Tk = LkUk. Since Tk is Hermitian and invertible, we can factorise the diagonal elements of
Uk. Using the uniqueness of the LU factorisation, we have a unique factorisation of Tk of the
form

Tk = Lk⇤kL
T

k
,

where Lk =

2

66664

1

µ
(k)
1 1

.
µ
(k)
k�1 1

3

77775
and ⇤k = diag(�

(k)
1 , . . . ,�

(k)
k

). It remains to show that

(�
(k)
j

) and (µ
(k)
j

) are independent of k. This is done by noticing that

Tk+1 =

2

4 ↵k

↵k �k+1

Tk

3

5 =

2

4
µk 1

Lk

3

5

2

4
�k+1

⇤k

3

5

2

4 µk

1

L
T

k

3

5

=


Lk⇤kL

T

k
µkLk⇤kek

µke
T

k
⇤kLk �k+1

�
.

By identification, the claim is proved.

46 CHAPTER 4. KRYLOV SUBSPACE METHODS

Proposition 4.11. Let r
(0) be of grade d with respect to A Hermitian positive-definite. Let

(v1, . . . , vd) be the vectors obtained by the Hermitian Lanczos algorithm. With the notation
of Lemma 4.10, there are coefficients (ck)1kd defined iteratively such that the CG iterates
(x

(k)
)1kd and (r

(k)
)1kd are defined by

8
><

>:

p̂k = vk+1 � µkp̂k�1

x
(k)

= x
(k�1)

+ ckp̂k�1

r
(k)

= r
(k�1)

� ckAp̂k�1

(4.6)

where p̂�1 = 0 and c
(0)
0 = 0.

Proof. By definition of the CG algorithm, we have
(
x
(k)

= x
(0)

+ z
(k)

, z
(k)

2 Kk(A, r
(0)

)

r
(k)

= b�Ax
(k)

? Kk(A, r
(0)

).

(4.7)

We know that for each k  d, (v1, . . . , vk) is a basis of Kk(A, r
(0)

) so x
(k)

= x
(0)

+Vktk, tk 2 Ck

and Vk =
⇥
v1, . . . , vk

⇤
. Hence r

(k)
= r

(0)
�AVktk. By orthogonality, we have V

⇤
k
r
(k)

= 0, thus
V

⇤
k
r
(0)

�V
⇤
k
AVktk = 0 and tk = (V

⇤
k
AVk)

�1
V

⇤
k
r
(0). Plugging this in x

(k) and using Lemma 4.10
yield

x
(k)

= x
(0)

+ Vk(V
⇤
k
AVk)

�1
V

⇤
k
r
(0)

= x
(0)

+ VkL
�T

k
⇤
�1
k

L
�1
k

V
⇤
k
r
(0)

.

Let bPk = VkL
�T

k
=

⇥
p̂0, . . . , p̂k�1

⇤
. bPk solves bPkL

T

k
= Vk so the columns of bPk satisfies

⇥
p̂0, . . . , p̂k�1

⇤

2

66664

1 µ1
.

. . . µk�1

1

3

77775
=

⇥
v1, . . . , vk

⇤

⇥
p̂0, p̂1 + µ1p̂0, . . . , p̂k�1 + µk�1p̂k�2

⇤
=

⇥
v1, . . . , vk

⇤
,

which is the first item in Equation (4.6).
We have

x
(k)

= x
(0)

+ VkL
�T

k
⇤
�1
k

L
�1
k

V
⇤
k
r
(0)

= x
(0)

+ bPk⇤
�1
k

bP ⇤
k
r
(0)

= x
(0)

+
⇥ bPk�1, p̂k�1

⇤
2

4
�
�1
k

⇤
�1
k�1

3

5
 bP ⇤

k�1
p̂
⇤
k�1

�
r
(0)

= x
(0)

+ bPk�1⇤
�1
k�1

bP ⇤
k�1r

(0)
+

p̂
⇤
k�1r

(0)

�k

p̂k�1

= x
(k�1)

+
p̂
⇤
k�1r

(0)

�k

p̂k�1,

4.2. THE CONJUGATE GRADIENT ALGORITHM 47

which is the second item in (4.6) with ck =
p̂
⇤
k�1r

(0)

�k
.

For the last item, we use the definition of r(k) and the expression of x(k)

r
(k)

= b�Ax
(k)

= r
(k�1)

� ckAp̂k�1.

Since the Arnoldi vectors (vj)1jd can be generated using a three-term recurrence, the
CG algorithm derived from Equation (4.6) can be rephrased in a three-term recurrence. There
is however a way to get rid of the Arnoldi vectors and rewrite the CG algorithm into a two-
term recurrence, which is the standard way to implement CG. This is based on the following
observations on the vectors p̂j and r

(j).

Remark 4.12. 1. the vectors (p̂j)0jd�1 define an A-orthogonal basis (i.e. hp̂i, Ap̂ji = 0

if i 6= j): we have
bP ⇤
d
A bPd = L

�1
d

V
⇤
d
AVdL

�T

d
= ⇤d.

2. p̂k 2 Span(r
(k)

, p̂k�1) for all 0  k  d� 1. Since p̂k = vk+1 � µk�1p̂k�1, it is sufficient
to prove that r(k) and vk+1 are colinear:

r
(k)

= b�Ax
(k)

= b�A(x
(0)

+ Vk(V
⇤
k
AVk)

�1
V

⇤
k
r
(0)

)

= r
(0)

�AVk(V
⇤
k
AVk)

�1
V

⇤
k
r
(0)

= r
(0)

� VkV
⇤
k
r
(0)

� hk+1,kvk+1e
T

k
(V

⇤
k
AVk)

�1
V

⇤
k
r
(0)

= �hk+1,kvk+1e
T

k
(V

⇤
k
AVk)

�1
V

⇤
k
r
(0)

,

where we have used that AVk = Vk(V
⇤
k
AVk) + hk+1,kvk+1e

T

k
by Proposition 4.8 and

VkV
⇤
k
r
(0)

= r
(0) since VkV

⇤
k

is the orthogonal projection onto Span(v1, . . . , vk) and v1 =

r
(0)

kr(0)k .

3. we have r
(k)

? r
(j) for any j < k: by definition of r(j), we have r

(j)
= r

(0)
� Az

(j) with
z
(j)

2 Kj(A, r
(0)

), thus r
(j)

2 Kj+1(A, r
(0)

) but r(k) ? Kk(A, r
(0)

) � Kj+1(A, r
(0)

).

The idea is to generate the sequences (x
(k)

), (pk), (r
(k)

) of the CG algorithm (pk and p̂k

are colinear) starting with p0 = r
(0) and using that

• pk = r
(k)

+ !kpk�1 where !k is chosen such that pk ?A pk�1;

• r
(k)

= r
(k�1)

� ↵k�1Apk�1 and ↵k�1 is set such that r
(k)

? r
(k�1).

Compared to Equation (4.6), the choice of the constants ↵k�1 and !k has to be justified:

• ↵k�1 ensures that r
(k)

? r
(k�1) as by A-orthogonality of (pj), we have

hr
(k�1)

, Apk�1i = hpk�1 � !k�1pk�2, Apk�1i = hpk�1, Apk�1i.

• !k ensures that pk ?A pk�1

�
hr

(k)
, Apk�1i

hpk�1, Apk�1i
= �

hr
(k)

, r
(k�1)

� r
(k)

i

hpk�1, Apk�1i

1

↵k�1
=

kr
(k)

k
2

kr(k�1)k2
= !k.

48 CHAPTER 4. KRYLOV SUBSPACE METHODS

Algorithm 4.3 Conjugate-gradient algorithm

function CG(A, b, x(0), "tol)
p0 = r

(0)
= b�Ax

(0), k = 0

while kr
(k)

k > "tol do
k = k + 1

↵k�1 =
kr(k�1)k2

hpk�1Apk�1i
x
(k)

= x
(k�1)

+ ↵k�1pk�1

r
(k)

= r
(k�1)

� ↵k�1Apk�1

!k =
krkk2

krk�1k2

pk = r
(k)

+ !kpk�1

end while
return x

(k)

end function

The cost of implementing the CG algorithm is a single matrix vector multiplication at
each step, and the storage of the vectors x

(k)
, r

(k) and pk.
The properties of the CG sequences (x(k)), (pk) and (r

(k)
) which have been discussed above

is summarised in the theorem below.

Theorem 4.13. Let A 2 Cn⇥n a Hermitian, positive-definite matrix, x
(0)

2 Cn such that
r
(0)

= b�Ax
(0) is of grade d with respect to A.

Then the sequence (x
(k)

) defined by Algorithm 4.3 is the conjugate gradient algorithm
characterised by kx

(k)
� x⇤kA = min

z2x(0)+Kk(A,r(0)) kz � x⇤kA where x⇤ is the solution to
Ax⇤ = b.

The algorithm stops after d iterations with the exact solution: x
(d)

= x⇤. The family of
residuals (r

(j)
)0jk�1 defines an orthogonal basis of Kk(A, r

(0)
) for each 1  k  d and

(pj)0jk�1 is an A-orthogonal basis of Kk(A, r
(0)

) for each 1  k  d.

4.2.3 Convergence of the CG algorithm

Using the mathematical characterisation of the CG algorithm, we can estimate the speed of
convergence of the CG algorithm.

Recall that x
(k) is defined by kx

(k)
� x⇤kA = min

z2x(0)+Kk(A,r(0)) kz � x⇤kA. Let z 2

x
(0)

+Kk(A, r
(0)

), by definition of the Krylov space Kk(A, r
(0)

), we can write

z = x
(0)

+

k�1X

i=0

⇣iA
i
r
(0)

, (⇣i)0ik�1 2 Ck
,

thus

z � x⇤ = x
(0)

� x⇤ +
k�1X

i=0

⇣iA
i+1

(x
(0)

� x⇤) = �(A)(x
(0)

� x⇤),

where � is a polynomial such that �(0) = 1 and deg �  k.

4.2. THE CONJUGATE GRADIENT ALGORITHM 49

The minimisation problem becomes

kx
(k)

� x⇤kA = min
�2Ck[X]
�(0)=1

k�(A)(x
(0)

� x⇤)kA

= min
�2Ck[X]
�(0)=1

kA
1/2

�(A)(x
(0)

� x⇤)k

= min
�2Ck[X]
�(0)=1

k�(A)A
1/2

(x
(0)

� x⇤)k

 min
�2Ck[X]
�(0)=1

k�(A)kkx
(0)

� x⇤kA.

Since A is Hermitian and positive-definite, there is a unitary matrix U and a diagonal
matrix ⇤ with positive entries such that A = U⇤U

⇤. The matrix norm of �(A) is then
k�(A)k = max1in |�(�i)|. This gives a convergence result for the CG algorithm.

Theorem 4.14. Let x(k) be the k-th iterate of the CG algorithm with A. Let 0 < �1  · · ·  �n

be the eigenvalues of A. Then we have

kx
(k)

� x⇤kA  min
�2Ck[X]
�(0)=1

max
1in

|�(�i)| kx
(0)

� x⇤kA. (4.8)

Remark 4.15. If k = n, by picking � as the Lagrange interpolation polynomial such that
�(0) = 1 and �(�i) = 0 for all 1  i  n, we prove that CG stops after n iterations.

It appears that it is convenient to relax max1in |�(�i)| to max�1��n |�(�)| in order to
explicit a convergence rate of the CG algorithm.

Corollary 4.16. Let x
(k) be the k-th iterate of the CG algorithm with A and cond2(A) the

condition number of A with respect to the 2-norm. Then we have

kx
(k)

� x⇤kA  2

⇣p
cond2(A)� 1p
cond2(A) + 1

⌘
k

kx
(0)

� x⇤kA. (4.9)

Proof. We have kx
(k)

� x⇤kA  min
�2Ck[X]
�(0)=1

max�1��n |�(�)| kx
(0)

� x⇤kA and we use the

fact that the min-max problem has an explicit solution given by the rescaled Chebyshev
polynomial 2

�k(�) =

Tk

⇣
�1+�n�2�
�n��1

⌘

Tk

⇣
�n+�1
�n��1

⌘ =

cos
�
k arccos

⇣
�1+�n�2�
�n��1

⌘�

Tk

⇣
�n+�1
�n��1

⌘ .

Then
min

�2Ck[X]
�(0)=1

max
�1��n

|�(�)| =
1

Tk

⇣
�n+�1
�n��1

⌘ .

2the Chebyshev polynomial of the first kind are defined by Tk(cos(✓)) = cos(k✓), for ✓ 2 [0,⇡].

50 CHAPTER 4. KRYLOV SUBSPACE METHODS

Let  =
�n
�1

= cond2(A), then

�n + �1

�n � �1
=

+ 1

� 1
=

1

2

⇣p
� 1

p
+ 1

+

p
+ 1

p
� 1

⌘
.

We invoke another property3 of the Chebyshev polynomials Tk

Tk

⇣
x+

1
x

2

⌘
=

1

2
(x

k
+ x

�k
), 8x 2 R.

So we deduce

Tk

⇣
+ 1

� 1

⌘
=

1

2

⇣⇣p
� 1

p
+ 1

⌘
k

+

⇣p
+ 1

p
� 1

⌘
k
⌘
�

1

2

⇣p
+ 1

p
� 1

⌘
k

.

Thus we obtain
min

�2Ck[X]
�(0)=1

max
�1��n

|�(�)|  2

⇣p
� 1

p
+ 1

⌘
k

.

Remark 4.17. For the steepest gradient algorithm, we had

kx
(k)
SG � x⇤kA 

⇣
cond2(A)� 1

cond2(A) + 1

⌘
k

kx
(0)

� x⇤kA.

Asymptotically, the convergence rate obtained for the CG algorithm is much better than the
one for the steepest gradient, but still sensitive to an ill-conditioned matrix A.

Remark 4.18. We have proved that for 0 < a < b, we have

Tm

⇣
a+ b

b� a

⌘
�

1

2

⇣p
+ 1

p
� 1

⌘
,

with  =
b

a
.

In the case where A has clustered eigenvalues 0 < �1  · · ·  �n�` ⌧ �n�`+1  . . . , we
can improve the previous estimate by considering another relaxation of the min-max problem.
For k � `, we can choose � 2 Ck

[X],�(0) = 1 as �(�) = q(�)e�(�), where e� is a polynomial
of degree at most k � ` with e�(0) = 1, and q(�) =

Q
n

i=n�`+1(1 �
�

�i
) i.e. the polynomial of

degree ` such that q(0) = 1 and q(�i) = 0 for n � ` + 1  i  n. Now using that |q(�)|  1

on [0,�n�`+1], we have

min
�2Ck[X]
�(0)=1

max
1in

|�(�i)|  max
1in

|q(�i)| min
e�2Ck�`[X]
e�(0)=1

max
1in�`

|e�(�i)|

 min
e�2Ck�`[X]
e�(0)=1

max
�1��n�`

|e�(�)|

 2

0

@

q
�n�`

�1
� 1

q
�n�`

�1
+ 1

1

A

k�`

.

3by definition, the equation is true for x = ei✓, thus it extends to any complex number.

4.2. THE CONJUGATE GRADIENT ALGORITHM 51

The corresponding convergence rate is then

kx
(k)

� x⇤kA  2

0

@

q
�n�`

�1
� 1

q
�n�`

�1
+ 1

1

A

k�`

kx
(0)

� x⇤kA. (4.10)

As �n
�1

�
�n�`

�1
, the previous estimate is much better than (4.9). This explains the good

convergence properties of the CG algorithm in practice (see Figure 4.1).

Figure 4.1: CG convergence rate compared to various upper bounds (4.10)

4.2.4 Preconditioned conjugate gradient algorithm

It is often advised to use a preconditioner to solve Ax⇤ = b to reduce the number of iter-
ations of the solver. A good preconditioner M 2 Cn⇥n is an invertible matrix such that
cond2(M

�1
A) ⌧ cond2(A). Then solving M

�1
Ax⇤ = M

�1
b is significantly easier than the

original system. In our case, even if M is Hermitian, positive-definite, M�1
A is in general

not Hermitian. It is necessary to adapt the CG algorithm in order to incorporate the pre-
conditioner. If we assume that M is Hermitian, positive-definite, we can write the Cholesky
decomposition of M = EE

⇤, where E 2 Cn⇥n is a lower triangular matrix with positive
entries. Instead of solving M

�1
Ax⇤ = M

�1
b, we can look at the symmetrised system

E
�1

AE
�⇤

x̃⇤ = E
�1

b (4.11)

Note that we have x⇤ = E
�⇤

x̃⇤. For the preconditioned linear system (4.11), the CG algorithm
is the following (see Algorithm 4.4).

It is possible to simplify Algorithm 4.4 and get rid of the Cholesky matrices E and E
⇤. To

do so, we are going to work with the variables x(k) = E
�⇤

x̃
(k) and r

(k)
= Er̃

(k) and introduce
a new variable dk = E

�⇤
p̃k. Note that since r̃

(k)
= E

�1
b � E

�1
AE

�⇤
x̃
(k), we have that

r
(k)

= b�AE
�⇤

x̃
(k)

= b�Ax
(k).

We now reexpress the quantities appearing in the transformed CG algorithm 4.4 in the
variables x

(k), r(k) and dk:

• kr̃
(k)

k
2
= hr̃

(k)
, r̃

(k)
i = hE

�1
r
(k)

, E
�1

r
(k)

i = hr
(k)

, E
�⇤

E
�1

r
(k)

i = hr
(k)

,M
�1

r
(k)

i

52 CHAPTER 4. KRYLOV SUBSPACE METHODS

Algorithm 4.4 Transformed conjugate-gradient algorithm

function TCG(A, b, x̃(0), "tol, E)
p̃0 = r̃

(0)
= E

�1
b� E

�1
AE

�⇤
x̃
(0), k = 0

while kr̃
(k)

k > "tol do
k = k + 1

↵k�1 =
kr̃(k�1)k2

hp̃k�1,E
�1AE�⇤p̃k�1i

x̃
(k)

= x̃
(k�1)

+ ↵k�1p̃k�1

r̃
(k)

= r̃
(k�1)

� ↵k�1E
�1

AE
�⇤

p̃k�1

!k =
kr̃kk2

kr̃k�1k2

p̃k = r̃
(k)

+ !kp̃k�1

end while
return E

�⇤
x̃
(k)

end function

• x̃
(k)

= x̃
(k�1)

+ ↵k�1p̃k�1 , x
(k)

= x
(k�1)

+ ↵k�1E
�⇤

p̃k�1 = x
(k�1)

+ ↵k�1dk�1

• r̃
(k)

= r̃
(k�1)

� ↵k�1E
�1

AE
�⇤

p̃k�1 , r
(k)

= r
(k�1)

� ↵k�1AE
�⇤

p̃k�1 = r
(k�1)

�

↵k�1Adk�1

• p̃k = r̃
(k)

+ !kp̃k�1 , dk = E
�⇤

r̃
(k)

+ !kdk�1 = M
�1

r
(k)

+ !kdk�1.

It is thus possible to rewrite Algorithm 4.4 without E or E
⇤.

Algorithm 4.5 Preconditioned conjugate-gradient algorithm

function PCG(A, b, x(0), "tol,M)
r
(0)

= b�Ax
(0), d0 = M

�1
r
(0), k = 0

while kr
(k)

k > "tol do
k = k + 1

↵k�1 =
hr(k�1)

,M
�1

r
(k�1)i

hdk�1Adk�1i
x
(k)

= x
(k�1)

+ ↵k�1dk�1

r
(k)

= r
(k�1)

� ↵k�1Adk�1

!k =
hr(k),M�1

r
(k)i

hr(k�1),M�1r(k�1)i
dk = M

�1
r
(k)

+ !kdk�1

end while
return x

(k)

end function

Compared to the CG algorithm, we need an additional linear solve of the system My = r
(k)

at each step of the preconditioned CG algorithm. Usually M has a simple structure (i.e.
diagonal or block-diagonal) such that the linear solve is cheap compared to the total cost of
the preconditioned CG algorithm.

Remark 4.19. We can check that the iterates that are produced by the preconditioned CG
algorithm satisfy:

• (r
(k)

) are M
�1-orthogonal, i.e. 8 i 6= j, hr

(i)
,M

�1
r
(j)

i = 0;

• (dk) are A-orthogonal, i.e. 8 i 6= j, hdi, Adji = 0.

4.3. GMRES 53

4.2.5 Conjugate gradient algorithm in the XXI
st

century

The CG algorithm has become the reference method to solve linear problems with hermitian
positive-definite matrices, as it combines all the advantages of a numerical method. The
numerical convergence is fast, and is fully understood from a theoretical point of view. The
algorithm is numerically stable, and requires minimal memory. Finally it is straightforward
to use any preconditioner with CG.

4.3 GMRES

The generalised minimal residual (GMRES) algorithm is a popular iterative method to solve
the linear system Ax⇤ = b when A is invertible and non-Hermitian.

Contrary to the CG algorithm studied previously, GMRES does not have a short-term
recurrence. This stems from the fact that we do not have the simplification of the Arnoldi
algorithm for general matrices.

4.3.1 The mathematical characterisation and the minimisation problem

Recall that GMRES is mathematically characterised by
(
x
(k)

= x
(0)

+ z
(k)

, z
(k)

2 Kk(A, r
(0)

)

r
(k)

= b�Ax
(k)

? AKk(A, r
(0)

),

or equivalently
kr

(k)
k = min

z2x(0)+Kk(A,r(0))
kb�Azk. (4.12)

Let (v1, . . . , vk) be the Arnoldi vectors forming an orthonormal basis of Kk(A, r
(0)

) and satis-
fying 8

><

>:

AVk = Vk+1Hkk

v1 =
r
(0)

kr(0)k
,

with

Vk = [v1, . . . , vk], and Hkk =

2

6666664

h11 . . . h1k

h21
.
.

hk,k�1 hkk

hk+1,k

3

7777775
2 C(k+1)⇥k

.

A vector z 2 x
(0)

+ Kk(A, r
(0)

) can be expressed as z = x
(0)

+ Vktk, for some tk 2 Ck. The
minimisation problem (4.12) becomes

kr
(k)

k = min
tk2Ck

kr
(0)

�AVktkk

= min
tk2Ck

kkr
(0)

kVk+1e1 � Vk+1Hkktkk

= min
tk2Ck

kVk+1(kr
(0)

ke1 �Hkktk)k

= min
tk2Ck

kkr
(0)

ke1 �Hkktkk, (4.13)

54 CHAPTER 4. KRYLOV SUBSPACE METHODS

where we have used that Vk+1 has orthonormal columns. The last equation is a mean square
minimisation problem. The standard way to solve such a problem is to write the so-called QR
factorisation of Hkk.

4.3.2 The QR factorisation

Theorem 4.20. Let H 2 Cm⇥n. Then there exist Q 2 Cm⇥m unitary (i.e. Q
⇤
Q = QQ

⇤
=

idm) and R 2 Cm⇥n upper-triangular such that H = QR. Such a factorisation is called a QR
factorisation of H.

Proof. The theorem is proved by induction on the dimension n.
For n = 1, H 2 Cm⇥1, so we can pick Q = [

H

kHk Q
?
] where Q

? has columns which are

an orthonormal basis of {H}
?. Then H = Q


kHk

0

�
.

Suppose that for any G 2 Cm⇥n, we can write its QR factorisation and let H 2 Cm⇥(n+1).
Write H = [H1 v], with H1 2 Cm⇥n and v 2 Cm. By the induction hypothesis, we have
H1 = Q1R1 where Q1 2 Cm⇥m is unitary and R1 2 Cm⇥n is upper-triangular. Let

w = Q
⇤
1v 2 Cm

, and wn+1:m =

2

64
wn+1

...
wm

3

75 = Q2R2,

where wn+1:m = Q2R2 is a QR factorisation of wn+1:m. Then setting Q = Q1


idn 0

0 Q2

�
and

R =


w1:n

R2
R1

�
, we check that

QR = Q1


(R1)1:n w1:n

0 Q2R2

�
= Q1


w1:n

wn+1:m
R1

�
=

⇥
Q1R1 Q1w

⇤
= H.

In general, the QR factorisation of a matrix H is not unique. We are going to give a few
properties of the QR factorisation.

Proposition 4.21. Let H 2 Cm⇥n be a full-rank matrix and H = QR a QR factorisation
of H. Denote by (h1, . . . , hn) (resp. (q1, . . . , qm)) the columns of H (resp. of Q). Then for
1  k  n, we have

Span(h1, . . . , hk) = Span(q1, . . . , qk), and rkk 6= 0.

Moreover if Q =
⇥
Q1 Q2

⇤
, Q1 2 Cm⇥n and Q2 2 Cm⇥(m�n) and R =


R1

0

�
with R1 2 Cn⇥n,

then H = Q1R1.

Proof. For the first part of the statement, we simply compare the columns of H and QR. For
all 1  k  n, we have hk =

P
k

i=1 qirik, thus we have Span(h1, . . . , hk) ⇢ Span(q1, . . . , qk)

but (h1, . . . , hk) is a free family since H is full-rank. Hence we have Span(h1, . . . , hk) =

Span(q1, . . . , qk). If rkk = 0, this would mean that hk 2 Span(q1, . . . , qk�1) = Span(h1, . . . , hk�1)

which is in contradiction with H being full-rank.

4.3. GMRES 55

The last statement is a consequence of R being upper-triangular. We have R =


R1

0

�
, and

H = Q1R1 follows.

The last identity is called the thin QR decomposition of H and under the assumption
that H is full-rank, we can show that there is a unique characterisation of the thin QR
decomposition.

Theorem 4.22. Let H 2 Cm⇥n be a full-rank matrix. Then there exists a unique Q1 2 Cm⇥n

with orthonormal columns and R1 2 Cn⇥n upper triangular with positive real entries on the
diagonal such that H = Q1R1.

Proof. The existence of Q1 and R1 is guaranteed by the proposition above. For the uniqueness,
we compute H

⇤
H = R

⇤
1Q

⇤
1Q1R1 = R

⇤
1R1. This is the Cholesky decomposition of H⇤

H which
is unique. Q1 is then given by Q1 = HR

�1
1 .

Remark 4.23. For the QR factorisation, R has the same shape as H but for the thin QR
factorisation, it is Q which has the same shape as H. The full QR factorisation is rarely
needed in practice, as it contains redundant information on the matrix H.

4.3.3 The GMRES algorithm

We are now solving the minimisation (4.13) by using a QR factorisation of Hkk = QkRk,
Qk 2 C(k+1)⇥(k+1) and Rk 2 C(k+1)⇥k. In this case, Equation (4.13) becomes

min
tk2Ck

kkr
(0)

ke1 �Hkktkk = min
tk2Ck

kkr
(0)

ke1 �QkRktkk = min
tk2Ck

kkr
(0)

kQ
⇤
k
e1 �Rktkk.

Rk is upper triangular, so we have Rk =

 eRk

0

�
and denoting kr

(0)
kQ

⇤
k
e1 =


gk

�k+1

�
with

gk 2 Ck
, �k+1 2 C, we see that tk 2 Ck solves eRktk = gk. Moreover we have

kr
(k)

k = min
tk2Ck

kkr
(0)

ke1 �Hkktkk = |�k+1|. (4.14)

It remains to implement efficiently a QR factorisation of Hkk. To this end, we are going to
use the fact that Hkk is an upper-Hessenberg matrix and that we can do a simple update of
the QR factorisation of Hk�1,k�1. Indeed we have

Hkk =


Hk�1,k�1 h

(k)

0 hk+1,k

�
=


Qk�1Rk�1 h

(k)

0 hk+1,k

�
,

where hk+1,k 2 R (see Proposition 4.8) and h
(k)

2 Ck. Consider Qk defined by

Qk =


Qk�1 0

0 1

�
⌦k, (4.15)

where ⌦k 2 C(k+1)⇥(k+1) is some unitary matrix fixed later. Then we have

⌦
⇤
k
Q

⇤
k
Hkk = ⌦

⇤
k


Rk�1 Q

⇤
k�1h

(k)

0 hk+1,k

�
.

56 CHAPTER 4. KRYLOV SUBSPACE METHODS

We simply need ⌦
⇤
k

to cancel the (k+1, k) entry of the above matrix. Let h̃(k) = Q
⇤
k�1h

(k)
2 Ck,

and let

⌦
⇤
k
=

2

664 c
⇤
k

sk

�sk ck,

idk�1

3

775 (4.16)

with

c
⇤
k
=

(h̃
(k)
k

)
⇤

q
|h

(k)
k

|2 + h
2
k+1,k

, and sk =
hk+1,kq

|h
(k)
k

|2 + h
2
k+1,k

. (4.17)

By a matrix multiplication, we can check that Rk = ⌦
⇤
k
Q

⇤
k
Hkk is upper triangular, and Rk is

given by

Rk =

2

4
h̃
(k)
1:k�1
1

0 0

Rk�1

3

5 2 C(k+1)⇥k
. (4.18)

We are now in position to write the GMRES algorithm 4.6.

Algorithm 4.6 GMRES

function GMRES(A, b, x(0), "tol)
r
(0)

= b�Ax
(0), k = 0

while kr
(k)

k > "tol do
k = k + 1

Compute vk of the Arnoldi algorithm 4.1 for A with v = r
(0)

Update Qk according to Eq. (4.15), (4.16) and (4.17)

Compute


gk

�k+1

�
= kr

(0)
kQ

⇤
k
e1

Set kr
(k)

k = |�k+1|

end while

Compute tk = eR�1
k

gk, where Rk =

 eRk

0

�
and Rk given by Eq. (4.18)

return x
(0)

+ Vktk

end function

Note that in GMRES, only the last approximation x
(k) to the solution x⇤ to the linear

equation is computed. Indeed, at each iteration, we just need to estimate the residual which
is given by Equation (4.14). Concerning the cost of GMRES, at each step, one step of Arnoldi
algorithm has to be performed, which costs one matrix-vector multiplication, and k scalar
products. The matrix Qk needs to be updated, but this cost is negligeable. However, in terms
of storage cost, all the Arnoldi vectors (v1, . . . , vk) have to be kept for each iteration. This is a
serious limitation to the algorithm and in practice, a full GMRES by keeping all the Arnoldi
vectors is not advisable, especially if the convergence is slow.

4.3.4 Restarted GMRES

The idea is to limit the number of Arnoldi vectors to K and restart a GMRES run from the
latest GMRES iteration.

4.3. GMRES 57

Algorithm 4.7 Restarted GMRES(K)

function GMRES(A, b, x(0), "tol,K)
r
(0)

= b�Ax
(0)

while kr
(0)

k > "tol do
Compute (v1, . . . , vK) the Arnoldi vectors of Algorithm 4.1 for A with v = r

(0)

Update QK according to Eq. (4.15),(4.16) and (4.17)

Compute


gK

�K+1

�
= kr

(0)
kQ

⇤
K
e1

Set kr
(0)

k = |�K+1|

Compute tK = eR�1
K

gK , where RK =

 eRK

0

�
and RK given by Eq. (4.18)

x
(0)

= x
(0)

+ VKtK

end while
return x

(0)

end function

The storage cost of the restarted GMRES scales as the number of Arnoldi vectors stored
at each step of the algorithm. Note that contrary to GMRES, we have no guarantee that
the algorithm converges after a finite number of iterations, although the residuals are still
nonincreasing, due to the mathematical characterisation of GMRES (4.3).

Remark 4.24. Let A 2 Cn⇥n be given by

A =

2

66664

0 . . . 0 ↵0

1
.

...
. . . 0 ↵n�2

1 ↵n�1

3

77775
, (4.19)

where (↵0, . . . ,↵n�1) 2 Cn. The characteristic polynomial of A is given by P (�) = det(� id�A) =

�
n
�
P

n�1
k=0 ↵k�

k, thus the coefficients can be chosen to have any eigenvalue distribution. Then
for any b 2 Cn, the restarted GMRES with x

(0)
= A

�1
(b � e1) does not converge, except if

K = n. In fact, the residual is constant r
(k)

= r
(0) for k  n � 1. This shows that there is

no hope to give an accurate characterisation of the convergence of GMRES solely based on the
spectrum of the matrix.

In practice, it is customary to take K = 20 and in general, a larger K improves the
convergence of the restarted GMRES algorithm.

Remark 4.25. The latter comment is a general advice but counterexamples exist to this rule of

thumb. Let A =

2

4
1 1 1

0 1 3

0 0 1

3

5 and b =

2

4
2

�4

1

3

5, then for x
(0)

=

2

4
0

0

0

3

5, restarted GMRES converges

after three steps for K = 1 but does not converge for K = 2.

58 CHAPTER 4. KRYLOV SUBSPACE METHODS

4.3.5 Convergence of GMRES

Convergence results on GMRES are less powerful than for the CG algorithm. An attempt
consists in following the same steps as in the convergence estimate of the CG algorithm:

kr
(k)

k = min
z2x(0)+Kk(A,r(0))

kb�Azk

= min
z̃2Kk(A,r(0))

kr
(0)

�Az̃k

= min
�2Ck[X]
�(0)=1

k�(A)r
(0)

k.

Since A is no longer Hermitian, we have to resort to another decomposition of the matrix
A, namely the Jordan decomposition which is recalled in the next proposition.

Proposition 4.26. Let A 2 Cn⇥n and (�1, . . . ,�r) be the distinct eigenvalues of A. For

1  `  r, let J�`
=

2

66664

�` 1

.
. . . 1

�`

3

77775
2 Cn`⇥n` be the Jordan blocks, where

P
r

`=1 n` = n.

Then there exists Y 2 Cn⇥n invertible such that

A = Y

2

64
J�1

. . .
J�r

3

75Y
�1

. (4.20)

This is the Jordan decomposition of A and if the columns of Y are of norm 1, it is unique up
to the permutations of the Jordan blocks and rotations in the Jordan blocks.

Using the Jordan decomposition of A, we have

kr
(k)

k = min
�2Ck[X]
�(0)=1

���Y

2

64
�(J�1)

. . .
�(J�r)

3

75Y
�1

r
(0)

���

 kY kkY
�1

kkr
(0)

k min
�2Ck[X]
�(0)=1

max
1`r

k�(J�`
)k.

Proposition 4.27. Let A = Y

2

64
J�1

. . .
J�r

3

75Y
�1 be a Jordan decomposition of A, and

r
(k) be the k-th residual of the GMRES algorithm 4.6. Then

kr
(k)

k  kY kkY
�1

kkr
(0)

k min
�2Ck[X]
�(0)=1

max
1`r

k�(J�`
)k.

If Y is ill-conditioned, the bound given is meaningless. Consider the matrix A = tridiag(�↵,↵,�
1
↵
) 2

Rn⇥n, with ↵ 2 R,↵ > 1. The eigenvalues of A are ↵ � 2 cos
�

j⇡

n+1

�
for 1  j  n and the

associated eigenvectors are yj =
Dzj

kDzjk for 1  j  n where (zj) is some orthonormal basis of
Rn and D = diag(↵, . . . ,↵

n
). The conditioning of Y then scales as ↵

n, but kr
(k)

k  kr
(0)

k.

4.3. GMRES 59

4.3.6 Beyond GMRES?

The bottleneck of GMRES is the Arnoldi algorithm and in particular, the absence of a short
recurrence in the Arnoldi algorithm for a general matrix A.

A natural question to ask is whether the Arnoldi algorithm is a good starting point to
derive a short-term iterative linear solver. In other words, for a given matrix A, is there an
(s+ 1)-term recurrence of the form

8
>><

>>:

x
(k)

= x
(k�1)

+ ↵k�1p
(k�1)

p
(k)

= Ap
(k�1)

�

s�2X

j=0

�k�1,jp
(k�1�j)

,
(4.21)

with x
(0)

2 Cn and p
(0)

= r
(0)

= b � Ax
(0) which stops after m  n iterations at the exact

solution x⇤ to Ax⇤ = b, for a well-chosen set of coefficients (↵k)0km�1 and (�k�1,j)0km�1
0js�2

?

By Eq. (4.21), the error ek = x
(k)

�x⇤ satisfies ek = ek�1+↵k�1p
(k�1). Hence by iteration,

ek 2 e0 + Span(p
(0)

, . . . , p
(k�1)

).

The error ek is thus minimised when ek ? Span(p
(0)

, . . . , p
(k�1)

), thus hek, p
(j)

i = 0 for all
0  j  k � 1. This gives in particular for j = k � 1

↵k�1 =
hp

(k�1)
, ek�1i

hp(k�1), p(k�1)i
,

and for 0  j  k � 2, we have

0 = hp
(j)

, eki = hp
(j)

, ek�1i+ ↵k�1hp
(j)

, p
(k�1)

i = ↵k�1hp
(j)

, p
(k�1)

i.

This means that if ↵k�1 6= 0, hp(j), p(k�1)
i = 0, thus the coefficients (�k�1,j)0km�1

0js�2
have to

be set to

�k�1,j =
hp

(k�1�j)
, Ap

(k�1)
i

hp(k�1�j), p(k�1�j)i
.

This motivates to restrict the search of a short-term iterative linear solver to the following
class of sequences.

Definition 4.28. The sequences (x
(k)

), (p
(k)

) defined by Equation (4.21) such that for any
b 2 Cn, there is m  n such that x(m) solves Ax

(m)
= b and hp

(j)
, p

(k)
i = 0 for 0  j 6= k  m

are called an (s+ 1)-term CG method.

We have a characterisation of the class of matrices which have an (s+1)-term CG method.

Theorem 4.29 (Faber, Manteuffel (1984)). An (s+1)-term CG method exists for the matrix
A if and only if either

1. the minimal polynomial of A has degree less than s;

2. A
⇤ is a polynomial of degree less than s� 2 in A.

Notice that for s+ 1 = 3 and assuming additionally that A is Hermitian positive-definite,
the CG algorithm 4.3 is a solution to the Faber-Manteuffel theorem.

60 CHAPTER 4. KRYLOV SUBSPACE METHODS

Proof. We are only going to prove the converse, as the proof of the implication is quite involved.
First, assume that the minimal polynomial of A has degree less than s. Let (x

(k)
), (p

(k)
)

be the sequences defined by Eq. (4.21). By induction, we see that for all 1  k  s,
(p

(0)
, . . . , p

(k�1)
) is a basis of Span(r(0), Ar

(0)
, . . . , A

k�1
r
(0)

). By induction, we also have that
x
(k)

= x
(0)

+
P

k�1
j=0 ↵jp

(j), thus we can choose (↵j)0js�1 and (�k,j)0ks�1
0js�2

such that

8
<

:

kb�Ax
(k)

k = min
z(k)2Span(p(0),...,p(k�1))

kr
(0)

�Az
(k)

k

p
(k)

? Span(p
(k�s+1)

, . . . , p
(k�1)

).

In particular for k = s, we have that

kb�Ax
(s)

k = min
z(s)2Span(p(0),...,p(s�1))

kr
(0)

�Az
(s)

k

= min
�2Cs�1[X]

kr
(0)

� �(A)r
(0)

k

= min
�2Cs[X]
�(0)=1

k�(A)r
(0)

k.

Choosing � as the minimal polynomial such that �(0) = 1 shows that Ax
(s)

= b.

Now assume that A⇤ is a polynomial of degree less than s� 2 of A. We will first prove by
induction that if (p(j))0jk are orthogonal vectors, then (p

(j)
)0jk+1 are also orthogonal.

For the initialisation, we know that for k  s� 1, choosing (�k�1,j)0js�2 such that

�k�1,j =
hp

(j)
, Ap

(k�1)
i

hp(k�1�j), p(k�1�j)i

ensures that hp
(i)
, p

(j)
i = 0 for 0  i 6= j  s� 1.

For the induction step, let us assume that (p
(j)

)0jk are orthogonal vectors. We already
know that by setting (�k,j)0js�2 such that

�k,j =
hp

(k�j)
, Ap

(k)
i

hp(k�j), p(k�j)i
,

we have that p
(k+1)

? Span(p
(k�s+2)

, . . . , p
(k)

). For i  k � s+ 1, we have from Eq. (4.21)

hp
(i)
, p

(k+1)
i = hp

(i)
, Ap

(k)
i �

s�2X

j=0

�k,jhp
(i)
, p

(k�j)
i.

By the induction assumption, hp
(i)
, p

(k�j)
i = 0 for 0  j  s � 2. Now hp

(i)
, Ap

(k)
i =

hA
⇤
p
(i)
, p

(k)
i. By assumption, A

⇤
= qs�2(A) for some polynomial qs�2 2 Cs�2

[X]. Thus
A

⇤
p
(i)

= qs�2(A)p
(i)

2 Span(p
(i)
, . . . , p

(i+s�2)
). But i+s�2  k�1, thus using the induction

assumption hqs�2(A)p
(i)
, p

(k)
i = 0. This shows that hp

(i)
, p

(k+1)
i = 0.

Notice that Span(p
(0)

, . . . , p
(k)

) ⇢ Span(r
(0)

, . . . , A
k
r
(0)

) but by orthogonality of the vec-
tors (p(0), . . . , p(k)), we deduce that Span(p(0), . . . , p(k)) = Span(r

(0)
, . . . , A

k
r
(0)

). Since x
(k)

=

x
(0)

+
P

k�1
i=0 ↵ip

(i), by selecting ↵i = �hp
(i)
, x

(0)
� x⇤i, we have that (x

(k)
) converges to x⇤ in

at most n steps. This finishes the proof.

4.3. GMRES 61

The Faber-Manteuffel theorem essentially states that for a general matrix A, there is no
equivalent to the conjugate-gradient algorithm solely based on the Krylov space Kk(A, r

(0)
).

This means that we need to look for another construction to define a short-term recurrence
for the iterative method.

Going back to the essence of the conjugate-gradient and GMRES methods, it is reason-
able to look for alternatives to the Arnoldi/Lanczos algorithms that would give a short-term
recurrence for any matrix.

One way to achieve such a short recurrence is to relax the orthogonality constraint on
the Arnoldi vectors (v1, . . . , vk) while remaining a basis of Kk(A, v). The new constraint is
to build a family of vectors (w1, . . . , wk) which is a basis of Kk(A

⇤
, w) and also a dual family

to (v1, . . . , vk), i.e. 8 1  i, j  k, hwi, vji = �ij . This gives the non-Hermitian Lanczos
algorithm 4.8.

Algorithm 4.8 Non-Hermitian Lanczos algorithm
function NonHermitianLanczos(A, v, w, k)

v0 = w0 = 0, �1 = �1 = 0

v1 =
v

kvk , w1 =
w

hv1,wi
for j = 1, . . . , k do

�j = hwj , Avji

bvj+1 = Avj � �jvj � �jvj�1

bwj+1 = A
⇤
wj � �jwj � �jwj�1

�j+1 = kbvj+1k

if �j+1 = 0 then
Stop

end if
�j+1 = hvj+1, ŵj+1i

if �j+1 = 0 then
Stop

end if
wj+1 =

bwj+1

�j+1

end for
return (v1, . . . , vk), (w1, . . . , wk)

end function

For the non-Hermitian Lanczos vectors, we have the following properties.

Proposition 4.30. If there is no breakdown in Algorithm 4.8, i.e. for all 1  j  k � 1

bvj+1 6= 0, bwj+1 6= 0,�j+1 6= 0, then we have

8
>>>><

>>>>:

AVk = VkTk + �k+1vk+1e
T

k

A
⇤
Wk = WkTk + �k+1wk+1e

T

k

W
⇤
k
AVk = Tk

W
⇤
k
Vk = idk,

(4.22)

62 CHAPTER 4. KRYLOV SUBSPACE METHODS

where Vk =
⇥
v1 . . . vk

⇤
, Wk =

⇥
w1 . . . wk

⇤
and Tk =

2

66664

�1 �2

�2
.
. �k

�k �k

3

77775
.

It is possible to derive an iterative method as a projection process, using the non-Hermitian
Lanczos to define a basis for the Krylov subspace. This yields the biconjugate gradient method
(BiCG) which by construction enjoys a short recurrence but does not preserve the relations
between the search space and the constraint space for the residuals. The non-Hermitian
Lanczos algorithm has two types of breakdowns:

• when bvj+1 = 0 or bwj+1 = 0: this is related to a stagnation of the corresponding subspace,
which means that we have reached convergence in the projection process;

• when bvj+1 6= 0, bwj+1 6= 0 but hbvj+1, bwj+1i = 0: this is called a serious breakdown
as we do not have a stable Krylov subspace under A, and so we do not have reached
convergence in the iterative algorithm. This can happen for well-conditioned matrices
which indicate that it can happen generically.

Remark 4.31. Let A =

2

4
5 1 �1

�5 0 1

1 0 1

3

5, v1 =

2

4
0.6

�1.4

0.3

3

5 and w1 =

2

4
0.6

0.3

�0.1

3

5. The eigenvalues of

A are 1, 2 and 3 and v2 =
1
3

2

4
1.5

�2.5

1.5

3

5, w2 =
1
3

2

4
1.8

0.6

�0.8

3

5. The vectors v2 and w2 are orthogonal

although the matrix A is well-conditioned.

4.3.7 GMRES in the XXI
st

century

GMRES has become the method of choice for solving nonhermitian linear problems. However,
compared to CG, GMRES suffer from some drawbacks:

• theoretically, there is no fully satisfying explanation of the convergence behaviour of
GMRES as the upper bounds are often much more pessimistic than what is actually
observed;

• in practice, one would often use restarted GMRES (or one of its variants), but again,
the behaviour of the algorithm with respect to the restart parameter is rather unclear.

Excellent references on that topic are the monograph [LS12] or the book by Y. Saad [Saa03].

