OPTIMISATION: EXERCICES

Exercice 1. Calcul de gradients

1. Calculer le gradient des fonctions suivantes définies sur $\mathcal{M}_n(\mathbb{R})$ pour le produit scalaire $\langle M, N \rangle = \text{Tr}(M^T N)$

$$\mathrm{Tr}(M), \quad \frac{1}{2}\mathrm{Tr}(M^TM), \quad \det(M).$$

- 2. Soit $g: \mathbb{R}^q \to \mathbb{R}$ et $f: \mathbb{R}^p \to \mathbb{R}^q$ deux fonctions dérivables. Calculer le gradient $\nabla (g \circ f)$.
- 3. Calculer le gradient de $A(f) = \langle b, u \rangle$ où $b \in \mathbb{R}^n$ est fixé et $u \in \mathbb{R}^n$ est la solution de $Lu = f \text{ pour } L \in \mathcal{M}_n(\mathbb{R}) \text{ inversible et } f \in \mathbb{R}^n.$

Déterminer les extrema sur \mathbb{R}^2 et leur nature (extremum local ou global) des fonctions suivantes

$$- f(x,y) = x^2 - 3xy + y^2$$

$$- f(x,y) = \frac{xy}{1 + x^2 + y^2}$$

$$-f(x,y) = x^4 + y^3 - 4y - 2$$

$$-f(x,y) = x^2 - 3xy + y^2$$

$$-f(x,y) = \frac{xy}{1+x^2+y^2}$$

$$-f(x,y) = x^4 + y^3 - 4y - 2$$

$$-f(x,y) = x^3 + xy^2 - x^2y - y^3$$

Exercice 3.

Soit $J: \mathbb{R}^d \to \mathbb{R}$ une fonction continue coercive et A un ensemble fermé de \mathbb{R}^d . Montrer que le problème

Trouver
$$x_* \in A \subsetneq \Omega$$
 vérifiant $J(x_*) = \inf_{x \in A} J(x)$. (1)

admet une solution.

Indication : on pourra considérer une suite minimisante et montrer qu'elle est bornée.

Exercice 4.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique définie-positive. Soit $b \in \mathbb{R}^n$ et considérons F(x) = $\frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$.

- 1. Calculer le gradient et la matrice hessienne de F.
- 2. Montrer que F est convexe.
- 3. Montrer que F est α -convexe et donner la plus grande valeur de α en fonction de A.
- 4. Quel est le minimiseur de F sur \mathbb{R}^n ?

Exercice 5. Solution au sens des moindres carrés

Soit A une matrice de taille $m \times n$ où m > n et b un vecteur de \mathbb{R}^m . On suppose que A est une matrice de rang m. Soit $J: \mathbb{R}^n \to \mathbb{R}$ définie par $J(x) = \frac{1}{2} ||Ax - b||^2$. On s'intéresse au problème suivant

Trouver le vecteur $x_* \in \mathbb{R}^m$ vérifiant $J(x_*) = \inf_{x \in \mathbb{R}^n} J(x)$.

- 1. Écrire le gradient et la Hessienne du problème de minimisation sur J.
- 2. Montrer que J est strictement convexe.
- 3. En écrivant les conditions de premier ordre nécessaires pour minimiser J(x), montrer que la solution x_* satisfait l'équation normale :

$$A^T A x = A^T b$$
.

Exercice 6.

On considère une fonction f continue définie sur l'intervalle [-1,1]. Soit $(x_i)_{1 \leq i \leq m}$ des points deux à deux distincts de [-1,1]. On s'intéresse au problème d'optimisation suivant

$$\min_{P \in \mathcal{P}_1} \mathcal{E}(P), \quad où \, \mathcal{E}(P) = \sum_{i=1}^m |P(x_i) - f(x_i)|^2,$$

Soit

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}, et Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

1. Mettre ce problème sous la forme

$$\min_{p \in \mathbb{R}^2} J(p) \tag{2}$$

avec $J(p) = \langle Ap, p \rangle - \langle b, p \rangle + c$, où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire euclidien de \mathbb{R}^2 , et $A \in \mathcal{M}_2(\mathbb{R})$, $b \in \mathbb{R}^2$, $c \in \mathbb{R}$ à déterminer.

- 2. Étudier l'existence et l'unicité des solutions du problème (2).
- 3. Résoudre ce problème.
- 4. Que représente la solution p_* du problème de minimisation?

Exercice 7. Méthode de la section dorée

Soit F une fonction continue sur[a,b]. On suppose que F est unimodale, c'est-à-dire qu'il existe $x_* \in [a,b]$ tel que F est décroissante $sur[a,x_*]$ et croissante $sur[x_*,b]$. Le but de l'exercice est de prouver la convergence de l'algorithme de la section dorée qui permet d'approcher $x_* = \arg\min_{x \in [a,b]} F(x)$.

On dit qu'un triplet (a^*, c^*, b^*) est admissible si $F(c^*) \leq \min(F(a^*, b^*))$.

- 1. Montrer que si $d^* \in]c^*, b^*[$ alors soit (a^*, c^*, d^*) , soit (c^*, d^*, b^*) est admissible.
- 2. Soit $(a_n), (b_n), (c_n), (d_n)$ les suites définies par

$$(a_{n+1}, b_{n+1}, c_{n+1}, d_{n+1}) = \begin{cases} (a_n, X, c_n, d_n) si \ (a_n, c_n, d_n) \ est \ admissible \\ (c_n, d_n, X, b_n) si \ (c_n, d_n, b_n) \ est \ admissible, \end{cases}$$

avec

$$X = \begin{cases} \alpha a_n + (1 - \alpha) d_n si \ (a_n, c_n, d_n) \ est \ admissible \\ (1 - \alpha) c_n + \alpha b_n si \ (c_n, d_n, b_n) \ est \ admissible. \end{cases}$$

où $\alpha \in]\frac{1}{2},1[$. Montrer que si $\alpha = \frac{1}{\phi}$ avec $\phi = \frac{1+\sqrt{5}}{2}$ alors pour tout $n \in \mathbb{N}$, on a

$$c_n = \alpha a_n + (1 - \alpha)b_n$$
, et $d_n = (1 - \alpha a_n) + \alpha b_n$.

- 3. Montrer que $b_{n+1} a_{n+1} = \alpha(b_n a_n)$.
- 4. En déduire que la suite (x_n) avec $x_n = \frac{a_n + b_n}{2}$ converge linéairement à un taux au plus α .

Exercice 8. Déterminer le minimum des problèmes de minimisation sous contrainte $\min_{(x,y)\in\mathbb{R}^2 g(x,y)=0} f(x,y)$ pour les choix de f et g suivants

- 1. $f(x,y) = x^2 + y^2 4xy$ et $g(x,y) = x^2 + y^2 8$
- 2. $f(x,y) = x^3 + y^3$ et $g(x,y) = x^2 + y^2 4$
- 3. $f(x,y) = \ln(x-y)$ et $g(x,y) = x^2 + y^2 2$
- 4. $f(x,y) = \frac{1}{x} + \frac{1}{y}$ et $g(x,y) = \frac{1}{x^2} + \frac{1}{y^2} \frac{1}{2}$

Exercice 9.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice, $b \in \mathbb{R}^n$ et $F(x) = \frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$. Soit $C \in \mathcal{M}_{p \times n}(\mathbb{R})$ avec p < n une matrice de rang p et $v \in \mathbb{R}^p$.

- 1. Écrire le théorème des extrema liés pour le problème de minimisation sous contrainte $\min_{x \in \mathbb{R}^n, Cx = v} F(x)$.
- 2. Montrer que l'équation précédente peut s'écrire comme un système linéaire

$$\begin{bmatrix} A & C \\ C^T & 0 \end{bmatrix} \begin{bmatrix} x_* \\ \lambda \end{bmatrix} = \begin{bmatrix} b \\ v \end{bmatrix}$$

3. Si A est symétrique définie-positive, montrer que le système précédent admet une unique solution.

Exercice 10. Convergence de la méthode du gradient à pas optimal pour les fonctions α -convexe

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction α -convexe. On note $x^* \in \mathbb{R}^n$ son unique minimiseur. Pour tout $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$, on considère la fonction $\varphi_x : \mathbb{R} \to \mathbb{R}$ définie par $\varphi_x(t) = f(x - t\nabla f(x))$.

1. Justifier que φ_x admet un unique minimiseur, que l'on notera t_x^* . Soit $x_0 \in \mathbb{R}^n$. On définit la suite suivante :

$$\forall k \in \mathbb{N}, \quad x_{k+1} = x_k - t_{x_k}^* \nabla f(x_k)$$

- 2. Justifier que si $x_k = x^*$ pour $k \in \mathbb{N}$, alors $x_{k+1} = x^*$.
- 3. Montrer que la suite $(f(x_k))_{k\in\mathbb{N}}$ est décroissante. En déduire qu'elle est convergente.
- 4. Montrer que $\forall k \in \mathbb{N}$, $f(x_k) f(x_{k+1}) \geq \frac{\alpha}{2} ||x_k x_{k+1}||^2$. En déduire que la suite $(||x_k x_{k+1}||)_{k \in \mathbb{N}}$ converge vers θ .
- 5. Montrer que $\forall k \in \mathbb{N}$, $\langle \nabla f(x_k), \nabla f(x_{k+1}) \rangle = 0$. En déduire que $\|\nabla f(x_k) \nabla f(x_{k+1})\|^2 = \|\nabla f(x_k)\|^2 + \|\nabla f(x_{k+1})\|^2$.
- 6. Montrer que $\lim_{k\to+\infty} (\|\nabla f(x_k)\|^2 + \|\nabla f(x_{k+1})\|^2) = 0$. En déduire que la suite $(\nabla f(x_k))_{k\in\mathbb{N}}$ converge vers θ .
- 7. Justifier que f est infinie à l'infini. En raisonnant par l'absurde, montrer que la suite $(x_k)_{k\in\mathbb{N}}$ est bornée. En déduire qu'il existe un compact $K\subset\mathbb{R}^n$ tel que $x_k\in K$ pour tout $k\in\mathbb{N}$.

- 8. En déduire qu'il existe $(x_{k_j})_{j\in\mathbb{N}}$ une sous-suite qui converge. Notons sa limite \tilde{x} . Montrer que $\nabla f(\tilde{x}) = 0$.
- 9. En déduire que $\tilde{x} = x^*$ et que la suite $(x_k)_{k \in \mathbb{N}}$ converge vers l'unique minimiseur de f.

Exercice 11.

Soit $q \ge p \ge 1$. Déterminer la valeur maximale de $\sum_{i=1}^n |x_i|^p$ sous la contrainte $\sum_{i=1}^n |x_i|^q = 1$.

Exercice 12.

Soit
$$A = \{(x, y) \in \mathbb{R}^2, y \ge x^2, x + y \le 1\}$$
. Déterminer

$$\max_{(x,y)\in A} y$$