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Introduction

These notes are a short introduction to the tensor train decomposition, with a particular focus
on solving linear equations within this format. The tensor train decomposition [OT09] is
presented as a generalisation of the singular value decomposition for matrices, which is central
in the characterisation of the low-rank approximation problem. Approximation results for the
tensor train format as well as the tensor train manifold are discussed.

The second part deals with the numerical resolution of linear systems or eigenvalue problems.
The historical algorithm is an alternating scheme, known as the density matrix renormalisation
group (DMRG) [Whi92, HRS12a], using the variational formulation of symmetric linear prob-
lems. Another way to solve linear problems is to adapt the classical iterative methods to the
tensor train format [KU16]. Both approaches are presented and discussed in the present notes.

These notes are inspired by the following texts on the tensor train decomposition [Hac12,
Hac14, Sch11, BSU16, UV20, Bac23].
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Chapter 1

Tensor trains

1.1 Singular value decomposition and generalisations for
tensors

This chapter is devoted to the tensor train decomposition, as a generalisation of the singular
value decomposition (SVD) for high-dimensional tensors. The SVD arises in the low-rank
approximation of matrices, as such, it is natural to look for generalisation of the SVD for
high-dimensional tensors. As it will be mentioned, the historical tensor formats, i.e. the CP
decomposition and the Tucker decomposition suffer from drawbacks that the tensor train format
does not have.

1.1.1 The low-rank approximation for matrices

The basis tool for the low-rank approximation of matrices is the singular value decomposition
(SVD).

Theorem 1.1.1 (Singular value decomposition). Let A ∈ Rm×n be a matrix. There exist
orthogonal matrices U ∈ Rm×rA and V ∈ Rn×rA, and a diagonal matrix Σ = Diag(s1, . . . , srA)
with s1 ≥ · · · ≥ srA > 0 such that A = UΣV T. The triplet of matrices (U,Σ, V T) satisfying
these properties is called a singular value decomposition (SVD) of A.

The SVD given in the above theorem is sometimes called the compact SVD of A. Another
common definition of the SVD is a decomposition of the matrix A ∈ Rm×n is to write the SVD
as A = UΣVT where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is
diagonal. The relationship between this SVD and its compact version is the following

U =
[
U 0

]
, Σ =

[
Σ 0
0 0

]
, V =

[
V 0

]
.

7
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The SVD of A can be derived from the eigenvalue decomposition of the matrices AAT and
AAT. Indeed, if A = UΣVT is the SVD of A, then AT = VΣUT so using that U and V are
orthogonal matrices, we have

AAT = UΣΣTUT = U


s21

. . .
s2r

0
. . .

UT, ATA = VΣTΣVT = V


s21

. . .
s2r

0
. . .

VT.

The singular values of A are simply the eigenvalues of the matrices AAT and ATA and the
orthogonal matrices U and V the corresponding orthonormal eigenvectors.

From the singular value decomposition -and its connection to the eigenvalue decomposition-
we can give another characterisation of the singular values:

sk = max
Vk⊂Rn

dimVk=k

min
x∈Vk

∥Ax∥2
∥x∥2

. (1.1.1)

From the SVD, it is possible to directly read the rank of the matrix A. It is simply the
number of nonzero singular values.

Singular values are also related to the Frobenius norm of the matrix. In an abuse of notation,
viewing A as an element of the vector space Rmn, we have by the SVD that

Aij =

rA∑
k=1

skuikvjk ⇒ A =

rA∑
k=1

skuk ⊗ vk.

Since the vectors (uk) and (vk) are orthonormal, it is also the case for (uk ⊗ vk) thus

∥A∥2F =

rA∑
k=1

s2k.

Another important property of the singular value decomposition for the low-rank approxi-
mation problem is the following.

Theorem 1.1.2 (Best rank r approximation of a matrix [Sch08]). Let A ∈ Rm×n be a matrix
and (U,Σ, V T) an SVD of A. The best rank-r of A in the Frobenius norm is given by

Ar = UrΣrV
T
r =

r∑
k=1

skukv
T
k ,

where Ur ∈ Rm×r, Σr ∈ Rr×r and Vr ∈ Rn×r are the respective truncations of U , Σ and V . The
error is given by

∥A− Ar∥F =
( ∑

k≥r+1

s2k

)1/2

. (1.1.2)

The best approximation is unique if sr > sr+1.
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Proof. An upper bound is obtained by a direct computation

∥A− Ar∥2F =
∥∥ ∑

j≥r+1

sjujv
T
j

∥∥2

F
=

∥∥ ∑
j≥r+1

sjuj ⊗ vj
∥∥2

2
=

∑
j≥r+1

s2j .

The lower bound is shown using a bound on the singular values: let M,N ∈ Rp×q

∀ 1 ≤ i, j ≤ min(p, q), 0 ≤ j ≤ d− i, si+j−1(M +N) ≤ si(M) + sj(N), (1.1.3)

where (sk(M))k, (sk(N))k, (sk(M+N))k are the respective singular values of M,N and M+N .
This singular value bounds are derived by considering the following subspaces (without loss of
generality, we can assume that q ≤ p):

V M+N = Span
(
vM+N
1 , . . . , vM+N

i+j−1

)
, V M = Span

(
vMi , . . . , vMq

)
V N = Span

(
vNj , . . . , vNq

)
.

By estimating the dimension of the intersection (by using that dimV M+dimV N+dimV M+N =
(q − i+ 1) + (q − j + 1) + i+ j − 1 = 2q + 1), we deduce that there exists a normalised vector
x ∈ V M ∩ V N ∩ V M+N :

si+j−1(M +N) ≤ ∥(M +N)x∥2 ≤ ∥Mx∥2 + ∥Nx∥2 ≤ si(M) + sj(N).

Let Ãr be a matrix of rank r. We apply the inequality (1.1.3) with M = A− Ãr, N = Ãr and
j = r + 1. Since sr+1(Ãr) = 0, we have

∀ 1 ≤ i ≤ q, sr+i(A) ≤ si(A− Ãr).

Hence ∥A− Ãr∥2F =
∑q

i=1 si(A− Ãr)
2 ≥∑q

i=r+1 si(A)
2, which is the result.

Remark 1.1.3. A similar approximation result can be written in the matrix norm ∥ · ∥2 sub-
ordinate to the vector ∥ · ∥2. In that case, it is straightforward to check that ∥A − Ar∥2 =∥∥∑

j≥r+1 sjujv
T
j

∥∥
2
= sr+1. Moreover for a rank-r matrix Ãr, by definition, there is a nor-

malised vector x ∈ Span(v1, . . . , vr+1) such that Ãrx = 0. Thus

∥A− Ãr∥2 ≥ ∥(A− Ãr)x∥2 ≥ ∥Ax∥2 ≥ sr+1.

Another way to phrase the best rank r approximation of a matrix is to take the subspace
point of view. A matrix A ∈ Rm×n can be viewed as a vector of the product space Rm ⊗ Rn

which is isometrically isomorphic to Rmn. The subspace problem is phrased as follows: find
subspaces U ⊂ Rm and V ⊂ Rn both of dimension r such that it minimises the distance

dist(A,U ⊗ V) = ∥A− ΠU⊗VA∥ = min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥, (1.1.4)

where ΠW is the orthogonal projection onto the subspace W ⊂ Rmn. The SVD gives a charac-
terisation of the solution to the minimisation problem (1.1.4).
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Proposition 1.1.4. Let A ∈ Rm×n, (U,Σ, V T) its SVD and r ∈ N. Denote (u1, . . . , urA)
and (v1, . . . , vrA) the respective columns of U and V . A solution to the subspace minimisation
problem (1.1.4) is given by

U = Span(u1, . . . , ur), V = Span(v1, . . . , vr). (1.1.5)

The solution is unique if sr > sr+1.

Proof. Let Ũ and Ṽ be respectively subspaces of Rm and Rn of dimension r. Let (ũi)1≤i≤r and
(ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . The minimisation problem (1.1.4) can be rewritten
as

min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥ = min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− PŨAPṼ∥2F ,

where PŨ (resp. PṼ) is the orthogonal projection onto Ũ (resp. Ṽ).
Let Ũ and Ṽ be respectively subspaces of Rm and Rn of dimension r. Let (ũi)1≤i≤r and

(ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . Then we have

∥A− PŨAPṼ∥2F = Tr
(
(A− PŨAPṼ)

T(A− PŨAPṼ)
)

= Tr
(
ATA− PṼA

TPŨA− ATPŨAPṼ + PṼA
TPŨAPṼ

)
= Tr

(
ATA

)
− Tr

(
PṼA

TPŨAPṼ
)
,

where we have used that since PṼ is an orthogonal projection, we have Tr
(
PṼA

TPŨA
)

=
Tr

(
ATPŨAPṼ

)
= Tr

(
PṼA

TPŨAPṼ
)
. We realise that

Tr
(
PṼA

TPŨAPṼ
)
=

∑
1≤i,j≤r

∣∣⟨ũi, Aṽj⟩
∣∣2.

Solving the minimisation problem (1.1.4) is equivalent to maximising
∑

1≤i,j≤r

∣∣⟨ũi, Aṽj⟩
∣∣2 where

(ũi)1≤i≤r and (ṽi)1≤i≤r are orthonormal families. Using the max-min characterisation of the
singular values (1.1.1), we have

∑
1≤i,j≤r

∣∣⟨ũi, Aṽj⟩
∣∣2 ≤ ∑r

j=1 ∥Aṽj∥2 ≤
∑r

j=1 s
2
j . The upper

bound is attained for Ũ = Span(u1, . . . , ur) and Ṽ = Span(v1, . . . , vr).

1.1.2 Generalisations of the SVD for tensors

A tensor u of order d ∈ N is a multidimensional array (ui1...id) ∈ Rn1×···×nd .
For higher-order tensors, different generalisations of the SVD are possible. With the previous

discussion, there are two natural options that emerge:

• write the tensor as a sum of rank-1 tensors:

u =
r∑

α=1

u(1)
α ⊗ · · · ⊗ u(d)

α ,
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where for all k ∈ JdK, u
(k)
α ∈ Rnk . This is the canonical polyadic decomposition (CP

decomposition);

• consider the subspace minimisation problem:

dist(u,U1 ⊗ U2 ⊗ · · · ⊗ Ud) = min
Ũ1⊂Rn1 ,dim Ũ1=r1,...,Ũd⊂Rnd ,dim Ũd=rd

∥u− ΠŨ1⊗···⊗Ũd
u∥,

where dimUk = rk for all k ∈ JdK. This yields the Tucker decomposition.

The canonical decomposition looks the most appealing as it is the most sparse way to repre-
sent a tensor. It has however one major drawback, being that the best rank r approximation (in
the sense of the CP decomposition) is ill-posed! [DSL08] Consider noncolinear vectors a ∈ Rn,
b ∈ Rn and the tensor

u = b⊗ a⊗ a+ a⊗ b⊗ a+ a⊗ a⊗ b.

which is a tensor of canonical rank 3. It can however be approximated as well as we wish by a
tensor of canonical rank 2: let ε > 0, then we see that

u−
(1
ε
(a+ εb)⊗ (a+ εb)⊗ (a+ εb)− 1

ε
a⊗ a⊗ a

)
= O(ε). (1.1.6)

This example highlights that the set of tensors of canonical rank less than 2 is not closed.
Contrary to matrices, the set of tensors of canonical rank less than r is not closed.

Regarding the Tucker decomposition, let u ∈ U1 ⊗ · · · ⊗ Ud. Then there is a core tensor
c ∈ Rr1×···×rd and matrices (Uk)1≤k≤d ∈

⊗d
k=1Rnk×rk such that

∀ i ∈ JnK, ui1...id =

r1∑
α1=1

· · ·
rd∑

αd=1

cα1...αd
(U1)

α1
i1
· · · (Ud)

αd
id
.

The storage cost of the tensor u is still exponential in the order d of the tensor (except if some
rk are equal to 1). As such it is a useful decomposition only for low order tensors. In the
following, we will focus on the efficient representation of tensors of order up to a hundred, for
which the Tucker decomposition is not suited.

1.2 Tensor train decomposition

1.2.1 Hierarchical SVD and tensor trains

We first define the reshape of a tensor.

Definition 1.2.1 (Reshape of a tensor). Let u ∈ Rn1×···×nd be a tensor. Let ℓ ∈ JdK. We say
that the matrix

(
ui1...iℓ;iℓ+1...id

)
∈ Rn1···nℓ×nℓ+1···nd is a reshape of u with respect to the modes JℓK.

This reshape will be denoted by u≤ℓ and for i ∈ JnK its elements u
iℓ+1...id
i1...iℓ

.
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The reshapes u≤ℓ for 1 ≤ ℓ ≤ d− 1 will be of particular interest.
To derive a tensor decomposition generalising the SVD, one can apply the SVD successively.

Let u ∈ Rn1×···×nd be a tensor and proceed as follows (we use here Einstein convention where
we sum over repeated indices)

ui1...id = (ui2...id
i1

) (reshape of u to n1 × n2 · · ·nd)

=
(
U1

)α1

i1

(
Σ1V

T
1

)i2...id
α1

(SVD)

=
(
U1

)α1

i1

(
Σ1V

T
1

)i3...id
α1i2

(reshape of Σ1V
T
1 )

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V

T
2

)i3...id
α2

(SVD of Σ1V
T
1 )

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V

T
2

)i4...id
α2i3

(reshape of Σ2V
T
2 ),

where we repeat the process until we get

ui1...id =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
Ud−1

)αd−1

αd−2id−1

(
Σd−1V

T
d−1

)id
αd−1

.

The tensors appearing in the decomposition above can be rearranged as below

ui1...id =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
Ud−1

)αd−1

αd−2id−1

(
Σd−1V

T
d−1

)id
αd−1

= A1[i1]α1 A2[i2]
α1
α2
· · · Ad−1[id−1]

αd−2
αd−1

Ad[id]
αd−1 .

The decomposition above is called the tensor train (TT) decomposition [OT09], also called
matrix product state [KSZ91] in the physics litterature is the simplest instance of a tensor
network. This terminology will be clearer when the graphical representations of the tensor
formats will be presented in Section 2.1.1.

Definition 1.2.2 ([KSZ91, OT09]). Let u ∈ Rn1×···×nd be a tensor. We say that (A1, . . . , Ad)
is a tensor train decomposition of u if we have for all i ∈ JnK

ui1...id = A1[i1]A2[i2] · · ·Ad[id] (1.2.1)

=

r1∑
α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1

A1[i1]α1A2[i2]
α1
α2
· · ·Ad[id]

αd−1 , (1.2.2)

where for each ik ∈ JnkK, Ak[ik] ∈ Rrk−1×rk (r0 = rd = 1). The tensor Ak ∈ Rrk−1×nk×rk are
called the TT cores and the sizes of the TT cores are the TT ranks of u.

Such a representation has a storage cost of
∑d

k=1 nkrk−1rk. Provided that the TT ranks do
not increase exponentially with the order d of the tensor, the TT decomposition is a sparse
representation of the tensor u.

An exact TT representation of any tensor can be achieved by the algorithm presented at the
beginning of Section 1.2.1 and given in Algorithm 1.1. This algorithm is called the hierarchical
SVD (HSVD) [Vid03, OT09].
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A1[i1] ∈ R1×r1

A1[1]

A1[2]

A2[i2] ∈ Rr1×r2

A2[1]

A2[2]

. . .

Ad−1[id−1] ∈ Rrd−2×rd−1

Ad−1[1]

Ad−1[2]

Ad[id] ∈ Rrd−1×1

Ad[1]

Ad[2]

Figure 1.1: Schematic representation of the TT decomposition of a tensor in R2×···×2

It is clear that there is no uniqueness of the TT decomposition. Indeed for a tensor
u ∈ Rn1×···×nd if (A1, . . . , Ad) is a tensor train decomposition, then for any invertible matrices
(Gk)1≤k≤d−1 ∈

⊗d−1
k=1GLrk(R), the TT cores (Ã1, . . . , Ãd) defined by{
Ã1[i1] = A1[i1]G1, i1 ∈ Jn1K, Ãd[id] = G−1

d−1Ad[id], id ∈ JndK

Ãk[ik] = G−1
k−1Ak[ik]Gk, ik ∈ JnkK, k ∈ J2; d− 1K,

is an equivalent TT representation. It is possible to partially lift this gauge freedom. This
discussion is postponed to Section 1.2.5.

The history of the TT decomposition dates back to the density-matrix renormalisation group
(DMRG) [Whi92] pioneered by White for the computation of properties of one-dimensional sta-
tistical physics systems. The connection between DMRG and TT has been realised later [OR95,
DMNS98].

Example 1.2.3. • a tensor product ui1...id = u
(1)
i1
· · ·u(d)

id
is a TT of TT rank 1, as the cores

are (u
(k)
ik
)1≤k≤d,1≤ik≤nk

.

• the unnormalised Bell state b ∈⊗2d
1 R2

bi1...i2d =
(
δ1,i1δ2,i2 + δ2,i1δ1,i2

)(
δ1,i3δ2,i4 + δ2,i3δ1,i4

)
· · ·

(
δ1,i2d−1

δ2,i2d + δ2,i2d−1
δ1,i2d

)
,

is a TT of rank 2: let (Bk)1≤k≤2d be defined by

B2k−1[i2k−1] =
[
δ1i2k−1

δ2i2k−1

]
, B2k[i2k] =

[
δ2i2k
δ1i2k

]
, k = 1, . . . , d. (1.2.3)

By a direct calculation, we can check that bi1...i2d = B1[i1] · · ·B2d[id].

• for d = 2, the following reordering of the indices of the Bell state b̃ ∈⊗4
1R2

b̃i1...i4 =
(
δ1,i1δ2,i3 + δ2,i1δ1,i3

)(
δ1,i2δ2,i4 + δ2,i3δ1,i4

)
has a TT decomposition of rank 4:
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ik B̃1 B̃2 B̃3 B̃4

1
[
1 0

] [
1 0 0 0
0 0 1 0

] 
0 0
0 0
1 0
0 1

 [
0
1

]

2
[
0 1

] [
0 1 0 0
0 0 0 1

] 
1 0
0 1
0 0
0 0

 [
1
0

]

This elementary example highlights the importance of the ordering of the indices of the
tensor for an efficient TT representation. The TT decomposition above can be derived by
using that (AC)⊗ (BD) = (A⊗B)(C⊗D) for matrices with compatible sizes. Hence the
formula for the TT cores of the reordered Bell state is obtained from the TT decomposi-
tion (1.2.3) of the Bell state

b̃i1i2i3i4 = bi1i3i2i4 = B1[i1]B2[i3]B3[i2]B4[i4]

= B1[i1](id2B2[i3]⊗B3[i2] id2)B4[i4]

= B1[i1](id2⊗B3[i2])(B2[i3]⊗ id2)B4[i4].

Remark 1.2.4. The reordered Bell state example b̃ ∈⊗2d
1 R2

b̃i1...i2d =
d∏

k=1

(
δ1,ikδ2,ik+d

+ δ2,ikδ1,ik+d

)
has a TT decomposition of rank 2d. The optimality of the ranks is proved by the characterisation
of the TT ranks stated in Theorem 1.2.12.

The central tool in the TT decomposition is the HSVD presented earlier and summarised
in Algorithm 1.1. From the characterisation of the error in the truncated SVD, it is expected
that the HSVD can be used to derive an approximation result by a TT with given TT ranks.
This will be treated in Section 1.2.4.

Remark 1.2.5. It is reasonably clear that such an algorithm extends to the decomposition into
a tree tensor network. Indeed, in the HSVD algorithm, we simply partition {1, . . . , d} into
the sets ({1}, {2, . . . , d}), then ({1}, {2}, {3, . . . , d}), and so on so forth. For trees, we choose
different partition choices that does not have to reduce to a singleton right away. For tensor
networks with loops, there is no equivalent of the HSVD for the construction of a tensor network
directly from the tensor. This makes the analysis of such networks much more difficult.
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Algorithm 1.1 Hierarchical SVD
Input: Tensor u ∈ Rn1×···×nd

Output: (A1, . . . , Ad) TT representation of u

function HSVD(u)
T i2...id
α0i1

= ui2...id
i1

(α0 dummy index)
for k = 1, . . . , d− 1 do

Uk,Σk, V
T
k = svd

(
T

ik+1...id
αk−1ik

)
Ak[ik]

αk
αk−1

= (Uk)
αk
αk−1ik

T
ik+2...id
αkik+1

=
(
ΣkV

T
k

)ik+1ik+2...id

αk

end for
Ad[id]

αd−1 =
(
Σd−1V

T
d−1

)id
αd−1

return (A1, . . . , Ad)
end function

1.2.2 Algebraic properties of TT and normalisation of TT

The TT decomposition has reasonable algebraic properties as it is stable by multiplication by
a scalar and by addition -up to augmentation of the TT ranks.

Proposition 1.2.6 (Algebraic properties of TT). Let (A1, . . . , Ad)and (Ã1, . . . , Ãd) be the re-
spective TT decompositions of the tensors u, ũ ∈ Rn1×···×nd. Let λ ∈ R. Then

• λu has a TT decomposition given by (Bk)k∈JdK with Bk = Ak for k ∈ Jd−1K and Bd = λAd;

• the sum u+ ũ has a TT decomposition (Sk)k∈JdK given by

S1[i1] =
[
A1[i1] Ã1[i1]

]
, Sd[id] =

[
Ad[id]

Ãd[id]

]
Sk[ik] =

[
Ak[ik] 0

0 Ãk[ik]

]
, k ∈ J2; d− 1K.

(1.2.4)

The first item is clear and the proof for the sum consists in expanding the TT decomposition
(S1, . . . , Sd). The TT decomposition of the sum (1.2.4) is in general not minimal and can be
compressed as explained in Section 1.2.4.

Remark 1.2.7. Since a tensor product u(1)⊗· · ·⊗u(d) is a TT of rank 1, we deduce that a CP
decomposition of rank r has at most a TT representation of rank r. The TT decomposition is
a generalisation of the CP format, with advantageous algebraic and topologic properties.
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The TT decomposition can be seen as a structured low-rank representation of a tensor
u ∈ Rn1×···×nd . Indeed, if (A1, . . . , Ad) is a TT representation of u, for any k ∈ Jd− 1K, we can
write

u≤k =

 A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


︸ ︷︷ ︸

∈Rn1···nk×rk

[
Ak+1[1] · · · Ad[1] . . . Ak+1[nk+1] · · · Ad[nd]

]︸ ︷︷ ︸
∈Rrk×nk+1...nd

,

which is a rank-rk matrix decomposition of the reshape u≤k ∈ Rn1···nk×nk+1···nd . This observation
will be used in the next sections.

The TT cores (Ak)k∈JdK obtained from the HSVD algorithm satisfy a particular property.
From the definition of the SVD, we have that the reshaped TT core ((Ak)

αk
ikαk−1

) ∈ Rnkrk−1×rk

is a partial isometry for any k ∈ Jd− 1K, i.e. we have ((Ak)
αk
ikαk−1

)T((Ak)
αk
ikαk−1

) = idrk . We say
in that case that are left-orthogonal or left-normalised.

Definition 1.2.8 (TT normalisation). Let (Ak)k∈JdK be a TT decomposition of a tensor u ∈
Rn1×···×nd with TT ranks (rk)k∈J0;dK. Let ℓ ∈ JdK. We say that a TT decomposition (A1, . . . , Ad)
is ℓ-normalised or normalised with root ℓ if for all k ∈ Jℓ− 1K

nk∑
ik=1

Ak[ik]
TAk[ik] = idrk ;

and for all k ∈ Jℓ+ 1; dK
nk∑

ik=1

Ak[ik]Ak[ik]
T = idrk−1

.

If ℓ = 1, we say that (Ak)k∈JdK is left-orthogonal or left-normalised. If ℓ = d, we say that
(Ak)k∈JdK is right-orthogonal or right-normalised.

The HSVD algorithm described in Algorithm 1.1 yields a left-orthogonal TT decomposition
of the tensor u. This is because successive SVDs are performed starting from the first index
of the tensor u. By performing successive SVDs from the “right”, i.e. by first doing the SVD
of u≤d−1 ∈ Rn1···nd−1×nd = (Ud−1Σd−1)

αd−1

i1...id−1
(V T

d−1)
id
αd−1

, then the SVD of (Ud−1Σd−1)
id−1αd−1

i1...id−2
and

so on and so forth, one would get a right-orthogonal TT representation of u.
TT representations with a specific normalisation have convenient properties.

Proposition 1.2.9. Let (Ak)k∈JdK be a left-orthogonal TT decomposition of a tensor uRn1×···×nd

with TT ranks (rk)k∈J0;dK. Then we have that

• ∥u∥ = ∥Ad∥;
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• for any k ∈ Jd− 1K, we have that the matrix A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]

 ∈ Rn1···nk×rk

is a partial isometry.

Proof. For any k ∈ Jd− 1K we have A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


T  A1[1]A2[1] · · ·Ak[1]

...
A1[n1]A2[n2] · · ·Ak[nk]


=

n1∑
i1=1

· · ·
nk∑

ik=1

(Ak[ik])
TA1[i1]

T · · ·A1[i1] · · ·Ak[ik]

=

n2∑
i2=1

· · ·
nk∑

ik=1

Ak[ik]
T · · ·A2[i2]

T
( n1∑

i1=1

A1[i1]
TA1[i1]︸ ︷︷ ︸

=idr1

)
A2[i2] · · ·Ak[ik]

= idrk ,

by left-orthogonality of the TT cores.
For the norm, we have

∥u∥ = ∥u≤d∥ =

∥∥∥∥∥∥∥∥∥∥∥∥

 A1[1]A2[1] · · ·Ad−1[1]
...

A1[n1]A2[n2] · · ·Ad−1[nd−1]


︸ ︷︷ ︸

∈Rn1···nd−1×rd−1

[
Ad[1] . . . Ad[nd]

]︸ ︷︷ ︸
∈Rrd−1×nd

∥∥∥∥∥∥∥∥∥∥∥∥
= ∥Ad∥,

as the first matrix is a partial isometry.

It is convenient to introduce the ▷◁ notation, which simplifies the manipulation of expressions
involving partial contractions of tensors of order 3.

Definition 1.2.10 (Strong Kronecker product). For (B,C) ∈ Rr×n×r̃ × Rr̃×ñ×r̂, the strong
Kronecker product denoted by B ▷◁ C ∈ Rr×n×ñ×r̂, is defined by

(B ▷◁ C)αjj̃α̂ =
r̃∑

α̃=1

Bαjα̃Cα̃j̃α̂.
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Proposition 1.2.11. Let (Ak)k∈JdK is a TT representation of a tensor u. Then we have

(i). u = A1 ▷◁ . . . ▷◁ Ad;

(ii). for any k ∈ Jd− 1K, we have that u≤k = (A1 ▷◁ . . . ▷◁ Ak)
≤k(Ak+1 ▷◁ . . . ▷◁ Ad)

≤1;

(iii). if (Ak)k∈JdK is a left-orthogonal TT representation of a tensor, then for any k ∈ Jd − 1K,
(A1 ▷◁ . . . ▷◁ Ak)

≤k ∈ Rn1···nk×rk is a partial isometry.

1.2.3 Characterisation of exact TT representations

From the hierarchical SVD (Algorithm 1.1), we directly get a characterisation of the TT ranks
of the exact TT representation of the tensor.

Theorem 1.2.12 (Characterisation of the TT ranks [HRS12b]). Let u ∈ Rn1×···×nd be a tensor.
Then the following assertions are true:

(i). the minimal TT ranks (r1, . . . , rd−1) is equal to the rank of the reshapes of u, i.e.

∀k ∈ Jd− 1K, rk = Rank (u≤k).

We will thus call (Rank(u≤k))k∈Jd−1K the TT ranks of u;

(ii). the HSVD algorithm 1.1 gives a TT decomposition of minimal TT ranks.

This theorem states that the ranks of the optimal TT representation of a tensor u is char-
acterised by its reshapes (u≤k)kJd−1K. Moreover the HSVD algorithm 1.1 produces a TT repre-
sentation of u with optimal ranks.

Proof. Let (Ã1, . . . , Ãd) be a TT representation of u of TT ranks (r̃k)k∈J0;dK. For any k ∈ Jd−1K,
we have

(u
ik+1...id
i1...ik

) =

 Ã1[1]Ã2[1] · · · Ãk[1]
...

Ã1[n1]Ã2[n2] · · · Ãk[nk]


︸ ︷︷ ︸

∈Rn1···nk×r̃k

[
Ãk+1[1] · · · Ãd[1] . . . Ãk+1[nk+1] · · · Ãd[nd]

]
︸ ︷︷ ︸

∈Rr̃k×nk+1...nd

.

This shows that any TT representation of u has TT ranks at least (Rank(u≤k))k∈J0;dK.
Let (A1, . . . , Ad) be the TT cores given by the HSVD algorithm. Using the same notation

as in Algorithm 1.1, for any k ∈ Jd− 1K we have

u≤k =

 A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


︸ ︷︷ ︸

∈Rn1···nk×rk

ΣkV
T
k .
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The first matrix is a partial isometry by Proposition 1.2.9 hence the equation above is an SVD
of u≤k. By the properties of the SVD, we have that rk = Rank (u≤k).

An important consequence of Theorem 1.2.12 is the closedness of the set with prescribed
TT ranks.

Proposition 1.2.13. Let r ∈ Nd+1. The set of tensor trains with TT rank less that r

MTT≤r
=

{
u | ∃(Ak)k∈JdK ∈×

k∈JdK

Rnk×rk−1×rk , ∀ i ∈ JnK, ui1...id = A1[i1] · · ·Ad[id]
}
,

is a closed set.

Proof. The proof follows from the characterisation of the TT ranks given by Theorem 1.2.12:
given a tensor u, for 1 ≤ k ≤ d− 1, the minimal TT rank rk is equal to the rank of the matrix
u

ik+1...id
i1...ik

. We conclude by recalling that the set of matrices with rank less than r is a closed
set.

This proposition is in stark contrast with the set of tensors with a given canonical rank r

MCP≤r
=

{
u

∣∣ ∀α ∈ JrK, ∃ (v(α)j )j∈JdK ∈
d×

j=1

Rnj ,u =
r∑

α=1

v
(α)
1 ⊗ · · · ⊗ v

(α)
d

}
,

as the example exhibited in eq. (1.1.6) shows that the set MCP≤r
is not closed if d ≥ 3 and

r ≥ 2.
Since the set MTT≤r

is closed, we can safely study the question of the best approximation
of a tensor with given TT ranks.

1.2.4 Approximation by TT

A natural way to reduce the TT ranks of the TT representation of a tensor is to truncate the
SVD at each step of the HSVD algorithm to a tolerance ε:

ui1...id = ui2...id
i1

(reshape of u to n1 × n2 · · ·nd)

≃
(
U1

)α1

i1

(
Σε

1V
T
1

)i2...id
α1

(truncated SVD)

≃
(
U1

)α1

i1

(
Σε

1V
T
1

)i3...id
α1i2

(reshape of Σε
1V

T
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
T
2

)i3...id
α2

(truncated SVD of Σε
1V

T
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
T
2

)i4...id
α2i3

(reshape of Σε
2V

T
2 ),

we repeat the process until we get

ui1...id ≃
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
Ud−1

)αd−1

αd−2id−1

(
Σε

d−1V
T
d−1

)id
αd−1

.
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Algorithm 1.2 Hierarchical SVD with truncations or TT-SVD
Input: Tensor u ∈ Rn1×···×nd , tolerance ε
Output: (A1, . . . , Ad) TT representation of u

function TT-SVD(u, ε)
T i2...id
α0i1

= ui2...id
i1

(α0 dummy index)
for k = 1, . . . , d− 1 do

Uk,Σk, V
T
k = tsvd

(
T

ik+1...id
αk−1ik

, ε
)

▷ Truncated SVD s. t. ∥tsvd(A)− A∥ ≤ ε

Ak[ik]
αk
αk−1

= (Uk)
αk
αk−1ik

, ∀ ik ∈ JnkK, αk−1 ∈ Jrk−1K, αk ∈ JrkK
T

ik+2...id
αkik+1

=
(
ΣkV

T
k

)ik+1ik+2...id

αk
, ∀(ik+1, . . . , id) ∈ J(nk+1, . . . , nd)K, αk ∈ JrkK

end for
Ad[id]

αd−1 =
(
Σd−1V

T
d−1

)id
αd−1

, ∀ id ∈ JndK, αd−1 ∈ Jrd−1K
return (A1, . . . , Ad)

end function

This algorithm [Ose11] is called the HSVD algorithm with truncations or TT-SVD. It is sum-
marised in Algorithm 1.2.

Truncating the successive SVDs gives an estimate on the best approximation by a tensor
train of fixed TT ranks.

Theorem 1.2.14 ([Gra10, Ose11, Hac12, Hac14]). Let u ∈ Rn1×···×nd, r̃ ∈ Nd+1 and MTT≤r̃

be the space of tensor trains of ranks bounded by r̃. Then we have

min
v∈MTT≤r̃

∥u− v∥ ≤

√√√√d−1∑
k=1

∑
α>r̃k

σ
(k)
α

2 ≤
√
d− 1 min

v∈MTT≤r̃

∥u− v∥,

where for k ∈ Jd−1K, (σ(k)
α )α∈JrkK are the singular values of the reshape (u≤k) ∈ Rn1···nk×nk+1···nd.

An important consequence of this theorem is that it is sufficient to derive bounds for the
tale of the singular values of each reshape (u

ik+1...id
i1...ik

) ∈ Rn1···nk×nk+1···nd to get bounds on the TT
ranks of a TT approximation. This considerably simplifies the question of the approximability
by TT of a given tensor, and this characterisation will be used to study the eigenvalue problems
of particular operators in Chapter 3.

The proof of this theorem relies on a close inspection of the HSVD algorithm with trunca-
tions 1.2. We state a key property of the HSVD algorithm before moving to the proof of the
theorem.

Proposition 1.2.15. For ε > 0, let (Ak)k∈JdK be the TT cores obtained from the truncated
HSVD algorithm 1.2 for a tensor u ∈ Rn1×···×nd and with tolerance ε. Let uε be the tensor
corresponding to the TT cores (Ak)k∈JdK. Let idk:d denote the identity on Rnk×···×nd.
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Then there exist a family of orthogonal projectors (Πk)k∈Jd−1K with Πk ∈ Rn1···nk×n1···nk such
that

uε = (Πd−1 ⊗ idd)(Πd−2 ⊗ idd−1:d) · · · (Π1 ⊗ id2:d)u (1.2.5)

and for all k ∈ Jd− 1K,∥∥∥(Πk ⊗ idk+1:d)(Πk−1 ⊗ idk:d) · · · (Π1 ⊗ id2:d)u− (Πk−1 ⊗ idk:d) · · · (Π1 ⊗ id2:d)u
∥∥∥

=
( ∑

α>rk

σα

(
(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)u

≤k
)2)1/2

,

where
(
σα(((Πk−1⊗ idk) · · · (Π1⊗ id2:k)

)
u≤k)

)
α

are the singular values of (Πk−1⊗ idk) · · · (Π1⊗
id2:k)u

≤k.

Proof. For any k ∈ Jd − 1K, let uε,k ∈ Rn1×···×nd be the tensor obtained at the step k in the
truncated HSVD algorithm 1.3

(uε,k)≤k = A1 ▷◁ · · · ▷◁ Ak(ΣkV
T
k ),

where ▷◁ is the strong Kronecker product defined in Definition 1.2.10. Let k ∈ Jd−2K. First note
that by definition of Ak+1, we have ((AT

k+1)
≤2)T(ΣkV

T
k )

ik+2...id
αkik+1

= Σk+1V
T
k+1. Let Ak = (A1 ▷◁

· · · ▷◁ Ak)
≤k and Πk+1 ∈ Rn1···nk+1×n1···nk+1 be defined by (Πk+1)

Jkjk+1

Ikik+1
= (Ak ▷◁ Ak+1)(Ak ▷◁

Ak+1)
T
Ik;ik+1;jk+1;Jk

, for all ik+1, jk+1 ∈ Jnk+1K and Ik, Jk ∈×k

ℓ=1
JnℓK. Since (Aj)j∈Jk+1K are left-

orthogonal, Πk+1 is an orthogonal projection. We have

(Πk+1 ⊗ idk+2:d)u
ε,k =

(
(Ak ▷◁ Ak+1)(Ak ▷◁ Ak+1)

T ⊗ idk+2:d

)
(Ak ▷◁ (ΣkV

T
k ))

=
(
(Ak ▷◁ Ak+1)⊗ idk+2:d

)(
(Ak ▷◁ Ak+1)

T ⊗ idk+2:d

)
(Ak ▷◁ (ΣkV

T
k ))

=
(
(Ak ▷◁ Ak+1)⊗ idk+2:d

)(
((AT

k+1)
≤2)T(ΣkV

T
k )

ik+2...id
αkik+1

)
= (Ak ▷◁ Ak+1) ▷◁ (Σk+1V

T
k+1) = uε,k+1,

where we have used that A T
k Ak = idrk . Since uε,1 = Π1 ⊗ id2:d u, we have by iteration for any

k ∈ Jd− 1K
uε,k = (Πk ⊗ idk+1:d) · · · (Π1 ⊗ id2:d)u, (1.2.6)

and in particular, (1.2.5).
Using notation of the truncated HSVD algorithm 1.2, we have (A≤2

k ,Σk, V
T
k ) is an SVD

of the matrix
(
(Σk−1V

T
k−1)

ik+1...id
αk−1ik

)
∈ Rrk−1nk×nk+1···nd for each k ∈ J2; d − 1K. Since Ak−1 is a

partial isometry, we deduce that ((Ak−1 ⊗ idk)A
≤2
k ,Σk, V

T
k ) is a truncated SVD of (Ak−1 ⊗

idk)
(
(Σk−1V

T
k−1)

ik+1...id
αk−1ik

)
, which is (uε,k−1)≤k. Now since (Ak−1 ⊗ idk)A

≤2
k = Ak and (uε,k)≤k =
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Ak(ΣkV
T
k ), we have

∥uε,k − uε,k−1∥ =
∥∥∥(Πk ⊗ idk+1:d) · · · (Π1 ⊗ id2:d)u− (Πk−1 ⊗ idk:d) · · · (Π1 ⊗ id2:d)u

∥∥∥
=

( ∑
α>rk

σα

(
(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)u

≤k
)2)1/2

,

where we have used (1.2.6).

We can now move on to the proof of Theorem 1.2.14.

Proof of Theorem 1.2.14. We begin with the proof of the left-hand side inequality. Using no-
tation from Proposition 1.2.15, we have

∥uε − u∥ = ∥(Πd−1 ⊗ idd) · · · (Π1 ⊗ id2:d)u− u∥

=
∥∥∥ d−1∑

k=1

(Πk ⊗ idk+1:d) · · · (Π1 ⊗ id2:d)u− (Πk−1 ⊗ idk:d) · · · (Π1 ⊗ id2:d)u
∥∥∥

≤
d−1∑
k=1

∥∥(Πk ⊗ idk+1:d) · · · (Π1 ⊗ id2:d)u− (Πk−1 ⊗ idk:d) · · · (Π1 ⊗ id2:d)u
∥∥∥

≤
d−1∑
k=1

( ∑
α>rk

σα

(
(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)u

≤k
)2)1/2

.

It suffices to prove that for any αk, we have

σα

(
(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)u

≤k
)
≤ σα(u

≤k).

As (Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k) is an orthogonal projection, its operator norm is equal to 1.
Thus using the variational characterisation of the singular values (1.1.1), we have that

σα

(
(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)u

≤k
)
≤

∥∥(Πk−1 ⊗ idk) · · · (Π1 ⊗ id2:k)
∥∥
op
σαk

(u≤k)

≤ σαk
(u≤k).

This finishes the proof of the left-hand side bound on the best approximation by a tensor train
in MTT≤r̃.

For the lower bound on the best approximation ubest ∈MTT≤r̃, we have for each k ∈ Jd−1K
by definition of the SVD truncation

∥u≤k − tsvd(u≤k, r̃k)∥2 =
∑
α>r̃k

σ(k)
α

2 ≤ ∥u− ubest∥2,

as (ubest)
ik+1...id
i1...ik

is a matrix of rank r̃k. Hence by summing over k ∈ Jd − 1K we get the lower
bound.
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A drawback of the HSVD algorithm or its truncated version is that it requires to handle
the full tensor. This means that the cost of the HSVD algorithm with truncations is still
exponential in the number of modes d.

If the tensor is already in a TT format, it is possible to reduce the cost of this truncation,
provided that the TT cores have the right normalisation. Let (A1, . . . , Ad) be a right-orthogonal
TT representation of the tensor u ∈ Rn1×···×nd . The first reshape is

u≤1 =

 A1[1]
...

A1[n1]

 [
A2[1] · · ·Ad[1] . . . A2[n2] · · ·Ad[nd]

]
,

and since the TT cores (A2, . . . , Ad) are right-orthogonal, the matrix
V2 =

[
A2[1] · · ·Ad[1] . . . A2[n2] · · ·Ad[nd]

]
satisfies V2V

T
2 = idr1 . Hence the first step of

the HSVD truncation can be reduced to the SVD of the reshape of A1. The same would hold
for the next step of the HSVD truncation, hence the total cost of the TT compression of u in
a TT format is reduced to O(dnr3) where r = max(rk) and n = max(nk).

The algorithm is summarised in Algorithm 1.3. It is often called TT rounding – as it is
conceptually the same operation as rounding a float – or TT compression.

Algorithm 1.3 TT rounding algorithm
Input: (A1, . . . , Ad) right-orthogonal TT representation, ε > 0 tolerance
Output: (Aε

1, . . . , A
ε
d) TT representation such that ∥TT(Aε

i )− TT(Ai)∥ ≤
√
d− 1 ε

function TT-rounding((A1, . . . , Ad), ε)
for k = 1, . . . , d− 1 do

Uk,Σk, V
T
k = tsvd

( Ak[1]
...

Ak[nk]

 , ε
)

▷ Truncated SVD s. t. ∥tsvd(A)− A∥ ≤ ε

rk = size(Σk)
(Aε

k)
αk
ikαk−1

= (Uk)
αk
ikαk−1

, ∀ ik ∈ JnkK, αk−1 ∈ Jrk−1K, αk ∈ JrkK
Ak+1[ik+1] = ΣkV

T
k Ak+1[ik+1], ∀ ik+1 ∈ Jnk+1K ▷ Root shifting

end for
Aε

d = Ad

return (Aε
1, . . . , A

ε
d)

end function

1.2.5 Gauge fixing

In this section, we give results on the gauge remaining from the TT normalisation introduced
in Section 1.2.2. We also present algorithms to obtain a TT decomposition with a prescribed
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normalisation.
Such normalisations turn out to be convenient for the computation of the norm a tensor.

Suppose that (A1, . . . , Ad) is a left-orthogonal TT decomposition. The norm of the correspond-
ing tensor u remarkably simplifies

Another instance where the choice of the normalisation is crucial is in solving eigenvalue
problems in DMRG (see Chapter 2).

It is also possible to mix both normalisations, in the sense that for some 2 ≤ ℓ ≤ d− 1, we
have

In that case, the norm of the tensor is carried by the TT core that is not normalised:

∥u∥2 =
n1∑

i1=1

· · ·
nd∑

id=1

Ad[id]
T · · ·A1[i1]

TA1[i1] · · ·Ad[id]

=

n1∑
i1=1

· · ·
nd∑

id=1

Tr
(
Ad[id]

T · · ·A1[i1]
TA1[i1] · · ·Ad[id]

)
=

n1∑
i1=1

· · ·
nd∑

id=1

Tr
(
Aℓ+1[iℓ+1] · · ·Ad[id]Ad[id]

T · · ·A1[i1]
TA1[i1] · · ·Aℓ[iℓ]

)
=

nℓ∑
iℓ=1

Tr
(
Aℓ[iℓ]

TAℓ[iℓ]).

A representation of this type can be obtained by slightly modifying the hierarchical SVD
described earlier. Instead of performing SVDs from left to right, one stops the SVDs from the
left to the cut ℓ and does the SVDs from the right. For example for ℓ = 2, we have (using again
Einstein convention)

ui1...id = (ui2...id
i1

) (reshape of u to n1 × n2 · · ·nd)

=
(
U1

)α1

i1

(
Σ1V

T
1

)i2...id
α1

(SVD)

=
(
U1

)α1

i1

(
Σ1V

T
1

)id
α1i2...id−1

(reshape of Σ1V
T
1 )

=
(
U1

)α1

i1

(
Ud−1Σd−1

)αd−1

α1i2...id−1

(
V T
d−1

)id
αd−1

(SVD of Σ1V
T
1 )

=
(
U1

)α1

i1

(
Ud−1Σd−1

)αd−1id−1

α1i2...id−2

(
V T
d−1

)id
αd−1

(reshape of Ud−1Σd−1),

where we repeat the process until we get

ui1...id =
(
U1

)α1

i1

(
U2Σ2

)α2

α1i2
· · ·

(
V T
d−2

)αd−1

αd−2id−1

(
V T
d−1

)id
αd−1

.

The TT decomposition then reads as

ui1...id =
(
U1

)α1

i1

(
U2Σ2

)α2

α1i2
· · ·

(
V T
d−2

)αd−1

αd−2id−1

(
V T
d−1

)id
αd−1

= A1[i1]α1 A2[i2]
α1
α2
· · · Ad−1[id−1]

αd−2
αd−1

Ad[id]
αd−1 ,

where (A1, . . . , Aℓ−1) are left-orthogonal and (Aℓ+1, . . . , Ad) are right-orthogonal.
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Conversion between left and right orthogonal TT representations

By successive LQ decompositions, it is possible to transform a left-orthogonal to a right
orthogonal TT decomposition. Let (A1, . . . , Ad) be a left-orthogonal TT decomposition of
u ∈ Rn1×···×nd . Then we have

ui1...id = A1[i1] · · ·Ad[id]

= A1[i1]
α1A2[i2]

α2
α1
· · ·Ad−1[id−1]

αd−1
αd−2

(
Ad

)id
αd−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·Ad−1[id−1]

αd−1
αd−2

(
Ld

)βd−1

αd−1

(
Qd

)id
βd−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·Ad−2[id−2]

αd−2
αd−3

(
Ad−1Ld

)id−1βd−1

αd−2

(
Qd

)id
βd−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·Ad−2[id−2]

αd−2
αd−3

(
Ld−1

)βd−2

αd−2

(
Qd−1

)id−1βd−1

βd−2

(
Qd

)id
βd−1

,

we repeat this process until we reach

ui1...id = (A1L2)
i1β1

(
Q2

)i2β2

β1
· · ·

(
Qd−1

)id−1βd−1

βd−2

(
Qd

)id
βd−1

= B1[i1]β1 B2[i2]
β1

β2
· · · Bd−1[id−1]

βd−2

βd−1
Bd[id]

βd−1 .

We simply need to check that the TT cores B2, . . . , Bd are right-orthogonal: for any k ∈ J2; dK,
we have

nk∑
ik=1

(
Bk[ik]Bk[ik]

T
)
αk−1α̃k−1

=

nk∑
ik=1

rk∑
αk=1

(Qk)
ikαk
αk−1

(Qk)
ikαk
α̃k−1

= δαk−1α̃k−1
.

These normalisations have the advantage of reducing the gauge freedom in the TT repre-
sentation.

Proposition 1.2.16 (Gauge freedom of left-orthogonal TT decompositions [HRS12b]). A left-
orthogonal TT representation of minimal TT rank (r1, . . . , rd−1) is unique up to the insertion of
orthogonal matrices, i.e. if (A1, . . . , Ad) and (B1, . . . , Bd) are left-orthogonal TT representations
of the same tensor u, then there are orthogonal matrices (Qk)1≤k≤d−1, Qk ∈ Rrk×rk such that
for all 1 ≤ ik ≤ nk we have

A1[i1]Q1 = B1[i1], QT
d−1Ad[id] = Bd[id]

QT
k−1Ak[ik]Qk = Bk[ik], for k = 2, . . . , d− 1.

(1.2.7)

Similar statements would be true for other types of normalisations.

Proof. The proof relies on the following observation: let M1, N1 ∈ Rp×r and M2, N2 ∈ Rr×q be
matrices of rank r such that

M1M2 = N1N2 and MT
1 M1 = NT

1 N1 = idr,
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there is an orthogonal matrix Q ∈ Rr×r such that

M1 = N1Q and M2 = QTN2.

The proof of this result is straightforward. We have N2 = NT
1 M1M2 = NT

1 M1M
T
1 N1N2. Since

N2 is full-rank, it shows that NT
1 M1 is an orthogonal matrix. Denote this matrix Q. Hence

N2 = QM2 and M1N
T
1 N1 = M1 thus, N1 = M1Q

T.
The proof then goes by iteration. We have(

A1[i1]
)(
A2[i2] · · ·Ad[id]

)
=

(
B1[i1]

)(
B2[i2] · · ·Bd[id]

)
n1∑

i1=1

A1[i1]
TA1[i1] =

n1∑
i1=1

B1[i1]
TB1[i1] = idr1 .

Since
(
A1[i1]

)
,
(
A2[i2] · · ·Ad[id]

)
,
(
B1[i1]

)
and

(
B2[i2] · · ·Bd[id]

)
have rank r1, by applying the

previous reult, there is an orthogonal matrix Q1 ∈ Rr1×r1 such that

A1[i1]Q1 = B1[i1]

QT
1

(
A2[i2] · · ·Ad[id]

)
=

(
B2[i2] · · ·Bd[id]

)
.

For the next iteration, we have(
QT

1A2[i2]
)(
A3[i3] · · ·Ad[id]

)
=

(
B2[i2]

)(
B3[i3] · · ·Bd[id]

)
n2∑

i2=1

A2[i2]
TQ1Q

T
1A2[i2] =

n2∑
i2=1

B2[i2]
TB2[i2] = idr1 .

Applying again the lemma, we have

QT
1A2[i2]Q2 = B2[i2]

QT
2

(
A3[i3] · · ·Ad[id]

)
=

(
B3[i3] · · ·Bd[id]

)
.

By iteration, we prove the proposition.

The Vidal representation

A convenient - albeit numerically unstable - way to convert easily between left-orthogonal and
right-orthogonal TT representations is to use the Vidal representation [Vid03].

Definition 1.2.17 (Vidal representation [Vid03]). Let u ∈ Rn1×···×nd be a tensor. We say
that (Γk)1≤k≤d, (Σk)1≤k≤d−1 is a Vidal representation if Σk are diagonal matrices with positive
diagonal entries, for all i ∈ JnK,

ui1,...,id = Γ1[i1]Σ1Γ2[i2]Σ2 · · ·Σd−1Γd[id], (1.2.8)
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and for all k ∈ JdK, the matrices Γk ∈ Rnk×rk−1×rk satisfy

n1∑
i1=1

Γ1[i1]
TΓ1[i1] = idr1 ,

nd∑
id=1

Γd[id]Γd[id]
T = idrd−1

(1.2.9)

∀ k = 2, . . . , d− 1,

nk∑
ik=1

Γk[ik]
TΣ2

k−1Γk[ik] = idrk ,

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

T = idrk−1
. (1.2.10)

The Vidal representation directly gives left and right orthogonal TT decompositions:

(i). (A1, . . . , Ad) left-orthogonal TT representation

A1[i1] = Γ1[i1], Ad[id] = Σd−1Γd[id]

Ak[ik] = Σk−1Γk[ik], k ∈ J2; d− 1K;

(ii). (B1, . . . , Bd) right-orthogonal TT representation

B1[i1] = Γ1[i1]Σ1, Bd[id] = Γd[id]

Bk[ik] = Γk[ik]Σk, k ∈ J2; d− 1K.

The conversion from left (or right) orthogonal decomposition to a Vidal representation is
more involved [Sch11, Section 4.6]. Let (Ak)1≤k≤d be the TT components of a left-orthogonal
TT representation. Then we have

u
ik+1...id
i1...ik

=

 A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


︸ ︷︷ ︸

=:Mk∈Rn1···nk×rk

[
Ak+1[ik+1] · · · Ad[id]

]︸ ︷︷ ︸
∈Rrk×nk+1...nd

Because (Ak) are left-orthogonal, then for all k ∈ Jd − 1K, MT
k Mk = idrk , hence the singular

values of the reshaped tensor are exactly the singular values of the right matrix.
With this remark, we can now write the iterative algorithm to get the Vidal representation

of the tensor.
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Algorithm 1.4 Left-orthogonal to Vidal representation
Input: (A1, . . . , Ad) left-orthogonal TT representation
Output: (Γ1, . . . ,Γd), (Σ1, . . . ,Σd−1) Vidal representation

function LeftToVidal((A1, ..., Ad))
Ud−1,Σd−1, V

T
d = svd

( [
Ad[1] Ad[2] · · · Ad[nd]

] )[
Γd[1] · · · Γd[nd]

]
= V T

d

for k = d− 1, . . . , 1 do
Uk−1,Σk−1, V

T
k = svd

( [
Ak[1]UkΣk · · · Ak[nk]UkΣk

] )
.

Γk solution to V T
k =

[
Γk[1]Σk · · · Γk[nk]Σk

]
end for
return (Γ1, . . . ,Γd), (Σ1, . . . ,Σd−1).

end function

By induction, one can show that the singular values of the successive SVD in the previous
algorithm are indeed the singular values of the tensor reshape.

Proposition 1.2.18. Let (Γk)1≤k≤d, (Σk)1≤k≤d−1 be a Vidal representation of u ∈ Rn1×···×nd.
Then Σk is the matrix of the singular values of the reshape u

ik+1...id
i1...ik

∈ Rn1···nk×nk+1···nd.

Proof. By definition of the SVD, the Vidal TT components Γk satisfy

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

T = idrk−1
.

We also have [
Ak[1]Uk · · ·Ak[nk]Uk

]
=

[
Uk−1Σk−1Γk[1] · · · Uk−1Σk−1Γk[nk]

]
.

Thus

nk∑
ik

Γk[ik]
TΣ2

k−1Γk[ik] =

nk∑
ik

Γk[ik]
TΣk−1U

T
k−1Uk−1Σk−1Γk[ik]

=

nk∑
ik

UT
k Ak[ik]

TAk[ik]Uk

= idrk .
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1.3 Manifold of tensor trains

Proposition 1.3.1. The set of tensor trains with TT rank r = (r1, . . . , rd−1)

MTTr =
{
u | ∃(Ak)k∈JdK ∈×

k∈JdK

Rnk×rk−1×rk , ∀ i ∈ JnK,ui1...id = A1[i1] · · ·Ad[id],

∀ k ∈ Jd− 1K, rank(u
ik+1...id
i1...ik

) = rk

}
,

is a manifold of dimension

dimMTTr =
d∑

i=1

ri−1niri −
d−1∑
i=1

r2i . (1.3.1)

Proof. Two TT representations (A1, . . . , Ad) and (Ã1, . . . , Ãd) of a same tensor are related by
a gauge (G1, . . . , Gd−1) ∈ GLr1(R)× · · ·GLrd−1

(R)

∀ 1 ≤ ik ≤ nk, Ak[ik] = Gk−1Ãk[ik]Gk, k = 1, . . . , d, (G0 = Gd = 1).

The dimension of GLrk(R) is r2k, hence the dimension of MTTr is

dimMTTr =
d∑

i=1

ri−1niri −
d−1∑
i=1

r2i .

Proposition 1.3.2 (Tangent space of MTTr [HRS12b]). Let A ∈MTTr and (A1, . . . , Ad) be a
left-orthogonal TT representation of A. Let δA ∈ TAMTTr.

There are unique components (Wk)1≤k≤d ∈
⊗d

k=1 Rrk−1×nk×rk such that

δA =
d∑

k=1

δA(k), (1.3.2)

with
δA

(k)
i1...id

= A1[i1] · · ·Ak−1[ik−1]Wk[ik]Ak+1[ik+1] · · ·Ad[id], (1.3.3)

and where for k ∈ Jd− 1K we have

nk∑
ik=1

Ak[ik]
TWk[ik] = 0rk×rk . (1.3.4)
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Proof. By definition of the tangent space TAMTTr , the tangent vectors are given by the deriva-
tives Γ̇ of the differentiable curves Γ : R→MTTr such that Γ(0) = A.

For all t ∈ R, since Γ(t) ∈MTTr , we can choose a left-orthogonal TT representation of Γ(t)
such that

Γ(t)i1...id = Γ
(t)
1 [i1] · · ·Γ(t)

d [id],

where for all 1 ≤ k ≤ d, t 7→ Γ
(t)
k ∈ Rnk×rk−1×rk is differentiable and Γ

(0)
k = Ak.

Since for k ∈ Jd − 1K,
∑nk

ik=1 Γ
(t)
k [ik]

TΓ
(t)
k [ik] = idrk , there is a differentiable function t 7→

Uk(t) ∈ Onkrk−1
(R) such that  Γ

(t)
k [1]
...

Γ
(t)
k [nk]

 = Uk(t)

 Ak[1]
...

Ak[nk]

 .

This implies that

 Γ̇
(0)
k [1]
...

Γ̇
(0)
k [nk]

 = Sk

 Ak[1]
...

Ak[nk]

 for some antisymmetric matrix Sk ∈ Rnkrk−1×nkrk−1 .

Let  Wk[1]
...

Wk[nk]

 = Sk

 Ak[1]
...

Ak[nk]

 .

Then
nk∑

ik=1

Ak[ik]
TWk[ik] =

[
Ak[1]

T . . . Ak[nk]
T
]
Sk

 Ak[1]
...

Ak[nk]

 ,

which is a symmetric and an antisymmetric matrix, hence it is zero.
The tangent vectors are hence necessarily of the form given by eq. (1.3.2)-(1.3.4). Dimension

counting and invoking Proposition 1.3.1 show the uniqueness of the representation.



Chapter 2

The DMRG algorithm

Density matrix renormalisation group [Whi92] (DMRG) is an alternating scheme to solve linear
problems or eigenvalue problems in the tensor train format. In the mathematical community, it
is also referred to the alternating linear scheme (ALS) in its simplest version or to the modified
ALS (MALS) [HRS12a], which is the equivalent to the two-site DMRG. In DMRG, given a
symmetric matrix H ∈ Rn1···nd×n1···nd , we want to solve for x∗ ∈ Rn1···nd the linear problem

Hx∗ = b, (2.0.1)

for a given b ∈ Rn1···nd , or for (λ,x∗) ∈ R×
(
Rn1···nd \ {0}

)
the lowest eigenvalue problem

Hx∗ = λx∗, (2.0.2)

For both problems, a tensor train representation of the operator H is needed in order to
efficiently implement the DMRG algorithm.

2.1 Tensor train operators

2.1.1 Graphical representation of tensors

As we are going to manipulate formulas involving more and more tensors, it can be helpful
to have graphical representations of the summation over shared indices between tensors. This
operation is called tensor contraction.

Let u ∈ Rn1×···×nd be a tensor. The graphical representation of u is given by Figure 2.1.
Elementary operations between vectors and matrices are explained in Figure 2.2.

2.1.2 Definition of tensor train operators

Definition 2.1.1 (Tensor train operator). Let H ∈ Rn1···nd×n1···nd be a matrix. A tensor train
operator (TTO) representation of the matrix is any tuple of order 4 tensors (H1, . . . , Hd),

31
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i1

i2

i3

i4

i5

u

Figure 2.1: Graphical representation of an order 5 tensor u. The tensor u is represented by its
vertex and its indices by the five free edges.

i2
v

(a) Vector vi2 .

i2 i1
A

(b) Matrix Ai2
i1

.

i1
Av

(c) Matrix-vector product
(Av)i1 =

∑
i2
Ai2

i1
vi2 .

Figure 2.2: Contraction of tensors. Every pair of connected edges is a summation over the
shared index.

Hk ∈ RRk−1×nk×nk×Rk (R0 = Rd = 1) such that

∀ i, j ∈ JnK,Hj1...jd
i1...id

= H1[i1, j1] · · ·Hd[id, jd],

or written with the strong Kronecker product

H = H1 ▷◁ · · · ▷◁ Hd.

(R0, . . . , Rd) are the TTO ranks of the TTO representation (H1, . . . , Hd). (H1, . . . , Hd) are the
TTO cores of the TTO representation.

In the context of tensor trains, this is the natural generalisation of the tensor product of
operators. Indeed let hk ∈ Rnk×nk for k ∈ JdK, then the operator H = h1⊗ · · · ⊗ hd has a TTO
representation of TTO rank 1 with TTO cores given by Hk[ik, jk] = (hk)ik,jk for k ∈ JdK.

The diagrammatic representation of a TTO is similar to the diagrammatic of a TT as
illustrated in Figure 2.4.

A TTO representation of a matrix can be obtained by reordering the indices of the matrix
H and performing a TT-SVD on the resulting tensor. More precisely, by defining the tensor
H̃ ∈ Rn2

1×···×n2
d

H̃i1j1;...;idjd = Hj1...jd
i1...id

,

we realise that a TTO representation is simply a TT representation of H̃.
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S

U1

i1

U3

i3

U2

i2
U4

i4

(a) Tucker decomposition

A1 A2 A3 Ad−2 Ad−1 Ad

i1 i2 i3 id−2 id−1 id

(b) Tensor train decomposition

Figure 2.3: Tucker and tensor train decompositions. From the graphical representation, at first
sight we see that the Tucker format still has an exponential dependence in the order of the
tensor, whereas this exponential dependence has disappeared in the TT format.

j1 j2 j3 j4

H1

H2 H3
H4

i1 i2 i3 i4

Figure 2.4: Diagrammatic representation of a TTO

2.1.3 Algebraic properties

Like the TT representation of vectors, the TTO format has some algebraic stability property.

Proposition 2.1.2. Let G,H ∈ Rn1···nd×n1···nd be matrices and (G1, . . . , Gd), Gk ∈ RRG
k−1×nk×nk×RG

k

and (H1, . . . , Hd), Hk ∈ RRH
k−1×nk×nk×RH

k be respectively TTO representations of G and H. Let
x ∈ Rn1···nd be vectors with respective TT representations (X1, . . . , Xd), Xk ∈ Rnk×rAk−1×rAk .
Then

(i). the sum G +H has a TTO representation (S1, . . . , Sd) given by

S1[i1, j1] =
[
G1[i1, j1] H1[i1, j1]

]
, Sd[id, jd] =

[
Gd[id, jd]
Hd[id, jd]

]
Sk[ik, jk] =

[
Gk[ik, jk] 0

0 Hk[ik, jk]

]
, k = 2, . . . , d− 1

(2.1.1)

(ii). the matrix-vector product y = Hx has a TT representation (Y1, . . . , Yd) with Yk[jk] ∈
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RRH
k−1r

X
k−1×RH

k rXk

Yk[ik] =

nk∑
jk=1

Hk[ik, jk]⊗Xk[jk], k ∈ JdK. (2.1.2)

(iii). the product GH has a TTO representation (P1, . . . , Pd) given by

Pk[ik, jk] =

nk∑
ℓk=1

Gk[ik, ℓk]⊗Hk[ℓk, jk], k ∈ JdK. (2.1.3)

Proof. This is a direct computation.

Remark 2.1.3. The TTO representations of the sum and the product of the operators are not
optimal. This is clear in the case of the sum G+H when we consider G = H. A TT rounding
step is required in order to reduce the TTO ranks of the representation. This is not innocuous as
essential properties of the matrix can be lost in the rounding procedure (symmetry for instance).

A diagrammatic proof of the formula for the product of two TTO representations is given
in Figure 2.5, avoiding cumbersome computations.

j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

(a) Diagrammatic representation of the
product of two TTO

j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

P1 P4

P3P2

(b) Diagrammatic representation of the
product of two TTO

Figure 2.5: Diagrammatic proof of the product of two TTO. The left panel is the diagrammatic
representation of the product of two TTO. On the right panel, the boxed tensors Pk are the
TTO cores of a TTO representation of the product GH, provided that the double edges shared
between neighbouring Pk are gathered into one edge.

Example 2.1.4. Let us consider the following matrix H ∈ Rnd×nd

H = h⊗ id⊗ · · · ⊗ id+ · · ·+ id⊗ id⊗ · · · ⊗ h,

where h ∈ Rn×n is a symmetric matrix and id is the identity in Rn×n. Since the matrix
h ⊗ id⊗ · · · ⊗ id is a TTO of rank 1, a naïve application of Proposition 2.1.2 yields a TTO
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representation of H of rank d. However it is possible to achieve a rank 2 representation with
the following construction

H1[i1, j1] =
[
hi1j1 δi1j1

]
, Hd[id, jd] =

[
δidjd
hidjd

]
Hk[ik, jk] =

[
δikjk 0
hikjk δikjk

]
, k = 2, . . . , d− 1.

(2.1.4)

Note that this representation also satisfies the property stated in Proposition 2.1.5.

Proposition 2.1.5. Let H ∈ Rn1···nd×n1···nd be a symmetric matrix. Then there is a TTO
representation of H such that

∀ 1 ≤ ik, jk ≤ nk, Hk[ik, jk] = Hk[jk, ik], k = 1, . . . , L. (2.1.5)

Proof.

2.1.4 The electronic Hamiltonian as a TTO

The electronic Hamiltonian operator in second quantisation is given by

H =
d∑

i,j=1

hijc
†
icj +

1

2

d∑
i,j,k,ℓ=1

Vijkℓc
†
ic

†
jcℓck, (2.1.6)

where hij (resp. Vijkℓ) correspond to the one-electron integrals and two-electron integrals with
Mulliken’s convention [HJO14]. The tensor representation of the creation c†i and annihilation
ci operators can be written as a tensor product of 2× 2 matrices

ci = Z ⊗ · · · ⊗ Z ⊗ C ⊗ id2⊗ · · · ⊗ id2 ∈ R2d×2d , (2.1.7)

c†i = Z ⊗ · · · ⊗ Z ⊗ CT ⊗ id2⊗ · · · ⊗ id2 ∈ R2d×2d , (2.1.8)

where C (resp. CT) appears in the i-th position and

C =

[
0 1
0 0

]
, and Z =

[
1 0
0 −1

]
.

Since the creation and annihilation operators are written as Kronecker products, their TTO
rank is 1. Using the algebraic properties of TTOs in Proposition 2.1.2, a naïve implementation
of the TTO of an electronic Hamiltonian has TTO rank scaling as d4.

Noticing that the reshape of the two-body interaction at any cut is at most of rank d2, we
deduce that the TTO rank of the electronic Hamiltonian can be reduced to O(d2) [CKN+16,
BGP22]. The TT-SVD is useful to compress these ranks to the optimal ones. To preserve the
particle conservation and the symmetry of the Hamiltonian, this procedure has to done with
great care.
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Remark 2.1.6. In popular implementations of QC-DMRG, it is usual to work in the space
orbital picture. Namely instead of having sites that can be either occupied or unoccupied,
sites can be unoccupied, occupied with spin up or down, or doubly occupied. The expression
of the electronic Hamiltonian is similar to the spin orbital case. The main reason of using
this representation is that it is more suited for an implementation that preserves the SU(2)
symmetry.

2.2 The DMRG algorithm

The DMRG algorithm [Whi92] is an algorithm to solve linear systems Hx∗ = b or the lowest
eigenvalue problem Hx∗ = λx∗ using the variational characterisation of the solution to both
problems. As such it is limited in the resolution of linear problems with symmetric and positive-
definite matrices. In the following, we assume that H is a symmetric, positive-definite matrix.

Assumption 2.2.1. The matrix H ∈ Rn1···nd×n1···nd is symmetric and positive-definite.

The solution to the linear system Hx∗ = b is also the minimiser of the functional

x∗ = argmin
x∈Rn1···nd

1

2
⟨x,Hx⟩ − ⟨b,x⟩. (2.2.1)

Using the Rayleigh-Ritz principle, the lowest eigenvalue of H is given by

x∗ = argmin
x∈Rn1···nd

⟨x,Hx⟩
⟨x,x⟩ . (2.2.2)

The first idea in DMRG is to reduce the minimisation set to the set of TT tensors with
prescribed TT ranks r

MTT≤r
=

{
u | ∃(Ak)k∈JdK ∈×

k∈JdK

Rnk×rk−1×rk , ∀ i ∈ JnK, ui1...id = A1[i1] · · ·Ad[id]
}
,

and thus solve, for example in the linear solve case, the following problem

x∗ = argmin
x∈MTT≤r

1

2
⟨x,Hx⟩ − ⟨b,x⟩. (2.2.3)

The practical trump of the DMRG algorithm now relies on the fact that the approximate
minimisation problem above is solved by a sequence of much smaller symmetric positive-definite
linear systems of size O(r2TTRTTO). These problems are tractable and moreover it is possible
to import all the technology developed in numerical linear algebra to solve these problems
efficiently.
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2.2.1 General algorithm

The DMRG algorithm, also known as alternating linear scheme (ALS) [HRS12a], is an alter-
nating optimisation over the set MTT≤r

. The general idea is to perform a descent step for each
TT core separately. Let TT be the map

TT :

{
Rr0×n1×r1 × · · · × Rrd−1×nd×rd → Rn1···nd

(X1, . . . , Xd) 7→ X1 ▷◁ · · · ▷◁ Xd = (X1[i1] · · ·Xd[id]),

Introducing the functional J(x) = 1
2
⟨x,Hx⟩ − ⟨b,x⟩ and j the map

j(X1, . . . , Xd) = J ◦ TT(X1, . . . , Xd), (2.2.4)

then minimising J over the manifold MTT≤r
is the same as minimising the functional j over

the product space Rn1×r1 × Rr1×n2×r2 × · · · × Rrd−1×nd :

min
x∈MTT≤r

1

2
⟨x,Hx⟩ − ⟨b,x⟩ = min

X1,...,Xd

j(X1, . . . , Xd).

In the one-site DMRG procedure, the minimisation of j is carried out sequentially over (Xk) by
freezing all the TT cores but one and by solving the minimisation problem for the remaining
core. More precisely, for k ∈ JdK, let Pk be defined by

Pk :

{
Rrk−1×nk×rk → Rn1×···×nd

V 7→ X1 ▷◁ · · · ▷◁ Xk−1 ▷◁ V ▷◁ Xk+1 ▷◁ · · ·Xd.
(2.2.5)

The minimisation problem to solve is the following

min
V ∈Rrk−1×nk×rk

J(PkV ) = min
V ∈Rrk−1×nk×rk

1

2
⟨PkV,HPkV ⟩ − ⟨b, PkV ⟩.

If the minimiser is denoted by Yk, it thus solves

PT
k HPkYk = PT

k b. (2.2.6)

A natural condition to impose on Pk is that it is a partial isometry, for the following reason.

Proposition 2.2.2. If Pk is a partial isometry, then the linear system (2.2.6) has a unique
solution.

Moreover the condition number of the linear system (2.2.6) is bounded by the condition
number of H, i.e.

cond2 P
T
k HPk ≤ cond2H.
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Proof. Since Pk is a partial isometry, the matrix PT
k HPk is symmetric positive-definite, thus

the linear system has a unique solution.
The bound on the condition number follows from the fact that Pk is a partial isometry, as

we have the inequalities λmin(P
T
k HPk) ≥ λmin(H) and λmax(P

T
k HPk) ≤ λmax(H).

It is rather simple to impose that Pk defines a partial isometry, by imposing that the left
TT cores are left-orthogonal while the right TT cores are right-orthogonal.

Lemma 2.2.3. Let (Aj)j∈JdK be a TT representation of some tensor x ∈ Rn1×···×nd. For k ∈ JdK,
if (A1, . . . , Ak−1) is left-orthogonal and (Ak+1, . . . , Ad) is right-orthogonal, then Pk is a partial
isometry.

Proof. For V ∈ Rrk−1×nk×rk , we have

∥PkV ∥2 =
n1∑

i1=1

· · ·
nd∑

id=1

Tr
(
Xd[id]

T · · ·Xk+1[ik+1]
TV [ik]

TXk−1[ik−1]
T · · ·X1[i1]

T

X1[i1] · · ·Xk−1[ik−1]V [ik]Xk+1[ik+1] · · ·Xd[id]
)

=

n1∑
i1=1

· · ·
nd∑

id=1

Tr
(
V [ik]

TXk−1[ik−1]
T · · ·X1[i1]

TX1[i1] · · ·Xk−1[ik−1]V [ik]

Xk+1[ik+1] · · ·Xd[id]Xd[id]
T · · ·Xk+1[ik+1]

T
)

=

nk∑
ik=1

Tr
(
V [ik]

TV [ik]
)
= ∥V ∥2,

where we have used the cyclicity of the trace and the orthogonality of the TT cores. Thus Pk

is indeed a partial isometry.

The final algorithm is described in Algorithm 2.1, where at each step of the algorithm, we
perform a linear solve for a reduced matrix PT

k HPk and a root shifting of the orthogonality
center of the TT.

The optimisation steps (2.2.7) and (2.2.8) are called microsteps. An iteration over the loop
s is called a sweep. Notice that at each microstep (2.2.7) or (2.2.8) the left TT cores are left-
orthogonal and the right-TT cores are right-orthogonal, thanks to the root shifting step in the
ALS algorithm.

2.2.2 Implementation details

In this part, we give some details about the implementation of the DMRG algorithm described
in Algorithm 2.1, as well as the total computational cost of a sweep. Each microstep corresponds
to solving a linear system of size O(nr2) (where n = maxnk and r = max rk), hence at first
glance, the storage cost would scale as O(n2r4) and the computational cost of solving each
linear system would scale as O(n3r6) with a direct solver and O(n2r4) for an iterative solver.
Using the structure of the matrix PT

k HPk, better scalings can be achieved.
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Algorithm 2.1 One-site DMRG with sweeps

Input: (X
(0)
1 , . . . , X

(0)
d ) in right-orthogonal TT representation

Output: (X
(s)
1 , . . . , X

(s)
d ) ∈MTT≤r

approximation of the minimiser in MTT≤r
of J

function one-site-DMRG((X(0)
1 , . . . , X

(0)
d ))

s = 0
while not converged do

for k = 1, 2, . . . , d− 1 do ▷ Forward half-sweep

Y
(s+ 1

2
)

k = argmin
Vk∈Rrk−1×nk×rk

j(X
(s+ 1

2
)

1 , . . . , X
(s+ 1

2
)

k−1 , Vk, X
(s)
k+1, . . . , X

(s)
d ) (2.2.7)

Q,R = qr(
(
Y

(s+ 1
2
)

k

)βk

αk−1ik
) ▷ QR decomposition(

X
(s+ 1

2
)

k [ik]
)αk

αk−1
= Qαk

αk−1ik
▷ Keep Q(

X
(s)
k+1[ik+1]

)αk+1

αk
←

(
RX

(s)
k+1[ik+1]

)αk+1

αk
. ▷ Shift R to the right

end for
for k = d, d− 1, . . . , 2 do ▷ Backward half-sweep

Y
(s+1)
k = argmin

Vk∈Rrk−1×nk×rk

j(X
(s+ 1

2
)

1 , . . . , X
(s+ 1

2
)

k−1 , Vk, X
(s+1)
k+1 , . . . , X

(s+1)
d ) (2.2.8)

L,Q = lq
((

Y
(s+1)
k

)βkik

αk−1

)
▷ LQ decomposition(

X
(s+1)
k [ik]

)αk

αk−1
=

(
Q
)αkik

αk−1
▷ Keep Q(

X
(s+ 1

2
)

k−1 [ik−1]
)αk−1

αk−2
←

(
X

(s+ 1
2
)

k−1 [ik−1]L
)αk−1

αk−2
▷ Shift L to the left

end for
s = s+ 1

end while
return (X

(s)
1 , . . . , X

(s)
d )

end function
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The matrix PT
k HPk A critical step in DMRG is to efficiently implement the effective matrix

PT
k HPk (see Figure 2.6).

j1

β1 A2 A3
A4

H1

H2 H3
H4

i1 α1 A2 A3
A4

(a) Effective matrix (PT
1 HP1)

β1j1
α1i1

∈
Rr1n1×r1n1

A1 A2 β2 β3
A4

j3

H1

H2 H3
H4

i3

A1
α2A2

α3
A4

(b) Effective matrix (PT
3 HP3)

β2j3β3
α2i2α3

∈
Rr2n3r3×r2n3r3

Figure 2.6: Examples of PT
k HPk

As the TT ranks can be large (of the order of 103−104), it is inefficient and useless to build
the effective matrix PT

k HPk. Instead, what is needed is the matrix-vector product PT
k HPkXk

where Xk ∈ Rrk−1nkrk . For this, a splitting of the effective Hamiltonian is used and it is written

(
PT
k HPk

)βk−1jkβk

αk−1ikαk
=

Rk∑
νk=1

(
Lk

)βk−1jkνk

αk−1ik

(
Rk

)βk

αkνk
. (2.2.9)

This splitting is illustrated in Figure 2.7.

A1 A2 β2

j3

H1

H2 H3

i3

A1
α2A2

β3
A4

H4

A4
α3L3 R3

Figure 2.7: Splitting of the effective Hamiltonian

For iterative solvers, it is more relevant to focus on the computation of the matrix-vector
multiplication. It goes as follows (see also Figure 2.8)(

PT
k HPk

)βk−1jkβk

αk−1ikαk

(
Xk

)
βk−1jkβk

=
((

Lk

)βk−1jkνk

αk−1ik

(
Xk

)
βk−1jkβk

)(
Rk

)βk

αkνk
, (2.2.10)

i.e.
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(i). first, we compute for ik ∈ JnkK, νk ∈ JRkK, αk−1 ∈ Jrk−1K, βk ∈ JrkK the sum

rk−1∑
βk−1=1

nk∑
jk=1

(
Lk

)βk−1jkνk

αk−1ik

(
Xk

)
βk−1jkβk

.

This scales as O(n2r2R).

(ii). in the second step, the previous tensor is contracted with Rk: for αk−1 ∈ Jrk−1K, αk ∈ JrkK,
ik ∈ JnkK, we sum

Rk∑
νk=1

rk∑
βk=1

(
LkXk

)νk
αk−1ikβk

(
Rk

)βk

αkνk

This scales as O(nr3R).

So overall the matrix-vector multiplication costs O(n2r2R + nr3R).

X1 X2 β2

j3

H1

H2 H3

ν3

i3

X1
α2X2L3

X3

j3

β2 β3

β3
X4

H4

ν3

X4
α3 R3

(a) Tensors L3, X3 and R3

X1 X2 X3 β3

H1

H2 H3

ν3

i3

X1
α2X2L3X3

β3
X4

H4

ν3

X4
α3 R3

(b) First step in the matrix-vector product
X1 X2 X3 X4

H1

H2 H3
H4

i3

X1
α2X2

α3 X4

(c) Result of the matrix-vector
product

Figure 2.8: Matrix-vector product (2.2.10)
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X1 X2 β2 β3
X4

j3

B1
B2 B3

B4

(a) PT
3 b

X1 X2 β2 β3
X4

j3

B1
B2 B3

B4

(b) Possible splitting of PT
3 b

Figure 2.9: Graphical representation of PT
3 b

The RHS PT
k b The assembly of the RHS is simpler than of the effective Hamiltonian. Sim-

ilarly, it is possible to precompute the left and the right parts of the RHS as depicted in
Figure 2.9b.

Operator updates The final main contribution to the total DMRG cost is the update
of the effective Hamiltonians from one microstep to the next one. We would like to compute
Lk+1,Rk+1 from Lk,Rk. In the case of a forward half-sweep, let us focus on the computation
of Lk+1 from Lk. This can be done in 3 steps:

(i). as in the matrix-vector product we first compute for ik ∈ JnkK, νk ∈ JRkK,
αk−1 ∈ Jrk−1K, βk ∈ JrkK the sum

rk−1∑
βk−1=1

nk∑
jk=1

(
Lk

)βk−1jkνk

αk−1ik

(
Xk

)
βk−1jkβk

.

This scales as O(n2r2R).

(ii). we then contract the result of the operation above with Xk, so for each αk ∈ JrkK,
νk ∈ JRkK, we need to compute the following sum

rk−1∑
βk−1=1

nk∑
jk=1

(
LkXk

)νk
αk−1ikβk

(
Xk

)
αk−1ikαk

This scales as O(nr3R).

(iii). finally, once the previous step is performed, one needs to contract with TTO core Hk+1, so
for each ik+1, jk+1 ∈ Jnk+1K, νk+1 ∈ JRk+1K, αk, βk ∈ JrkK, the following sum is computed

rk−1∑
βk−1=1

nk∑
jk=1

(
XT

k LkXk

)νk
αkβk

(
Hk+1

)
νkik+1jk+1νk+1

This scales as O(n2r2R2).
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X1 X2 β2

j3

H1

H2 H3

ν3

i3

X1
α2X2L3

X3

j3

β2 β3

j4

H4

ν3

i4

X3

i3

α2 α3

(a) Tensors L3, X3 and H4

X1 X2 X3 β3

H1

H2 H3

ν3

i3

X1
α2X2L3X3

j4

H4

ν3

i4

X3

i3

α2 α3

(b) First step in the update

X1 X2 X3
β3

α3

H1

H2 H3

ν3

X1
α2X2 X3

(
X∗

3L3X3

)

j4

H4

ν3

i4

(c) Second step in the update

X1 X2 X3
β3

α3

j4

H1

H2 H3 H4

i4

X1
α2X2 X3

(d) Third step in the update

Figure 2.10: Microstep operators updates

The cost of assembling Rk from Rk+1 has the same scaling. The total cost of DMRG is
summarised in the following Proposition.

Proposition 2.2.4 (Total cost of DMRG). The computational cost of DMRG scales as
Nsweepd((n

2r2R + nr3R)Nmatvec + n2r2R2), where Nsweep is the number of total DMRG sweeps
and Nmatvec is the maximal number of matrix-vector products in all the microsteps.

2.3 Convergence of DMRG
The global convergence of DMRG is a difficult problem, as the TT manifold is not a convex
set. The convergence results on DMRG are local and assume that the Hessian of the functional
j is of full-rank.

Assumption 2.3.1. At the local minimiser x∗, the Hessian j′′ is of full rank

rank j′′(x∗) =
d∑

i=1

ri−1niri −
d−1∑
i=1

r2i , i.e. ker j′′(x∗) = Tx∗MTT≤r
. (2.3.1)
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Figure 2.11: Convergence to the solution of Hx∗ = b with H the discrete Laplacian in R48×48 ,
b a random tensor of TT rank 2. The reference solution has TT rank 10.

2.3.1 Local convergence of DMRG

Assumption 2.3.1 ensures that the Hessian is invertible at the solution to the DMRG equations.

Theorem 2.3.2 ([RU13, Theorem 2.7]). Let x∗ be a local minimiser of the problem (2.2.3).
There exists a neighbourhood W ⊂ MTT≤r

in MTT≤r
of x∗ such that Algorithm 2.1 initiated

with x(0) ∈W converges to the minimiser x∗.

2.3.2 Half-sweep convergence

A more surprising result states that if the TT ranks in the DMRG algorithm are exactly the
TT ranks of the sought solution, then DMRG returns the exact solution in a half-sweep (see
Figure 2.11).

This result is shown in the case of H = id in [HRS12a].

Proposition 2.3.3 ([HRS12a, Lemma 4.2]). Let b ∈ Rn1×···×nd with TT ranks (r0, . . . , rd). Let
(B1, . . . , Bd) be a left-orthogonal TT representation of b. Let (X1, . . . , Xd) be a right-orthogonal
TT with TT ranks (r0, . . . , rd). Suppose that (X1, . . . , Xd) is such that for all k ∈ J2; dK, the
matrix Gk ∈ Rrk−1×rk−1 defined by(

Gk

)
βk−1αk−1

=
∑

ik,...,id

∑
αk...αd−1
βk...βd−1

(
Xk[ik])

αk
αk−1
· · ·

(
Xd[id])αd−1

(
Bk[ik])

βk

βk−1
· · ·

(
Bd[id])βd−1

.

is invertible. The DMRG algorithm applied with H = id converges in a half-sweep.
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The condition on the initial guess is related to a nondeficiency of the initialisation of the
DMRG algorithm.

Proof. We are going to prove by recurrence that there are Qk ∈ Rrk×rk for k ∈ Jd − 1K such
that the solution of the DMRG microstep k can be written X

( 1
2
)

k [ik] = Qk−1Bk[ik]Q
T
k .

Initialisation: since (X1, . . . , Xd) is right-orthogonal, we have that PT
1 P1 = id. The solution

to the first microstep is simply given by

Y1[i1]α1 =
∑
β1

B1[i1]β1(G2)
β1
α1
.

Let QT
1 , R1 be the QR factorisation of G2. Then

X
( 1
2
)

1 [i1]α1 =
∑
β1

B1[i1]β1(Q1)
α1
β1
.

Iteration: suppose that for all j ∈ Jk − 1K, we have

X
( 1
2
)

j [ij]
αj−1
αj

=
∑

βj−1,βj

(Qj−1)
αj−1

βj−1
(Bj[ij])

βj−1

βj
(Qj)

αj

βj
.

At microstep k, by left-orthogonality of (X( 1
2
)

j )1≤j≤k−1 and right-orthogonality of (Xj)k+1≤j≤d,
again the solution to the microstep k is given by

Yk[ik]
αk−1
αk

=
∑

α1...αk−1
β1...βk

B1[i1]β1 · · ·Bk[ik]
βk−1

βk
X

( 1
2
)

1 [i1]α1 · · ·X
( 1
2
)

k−1[ik−1]
αk−2
αk−1

(Gk+1)
βk
αk
.

By the recurrence hypothesis and the orthogonality of the TT cores (Bj)1≤j≤k−1, the above
expression simplifies to

Yk[ik]
αk−1
αk

=
∑

βk−1,βk

Bk[ik]
βk−1

βk
(Qk−1)

αk−1

βk−1
(Gk+1)

βk
αk
.

Now let QT
k , Rk be the QR factorisation of Gk+1, then

Xk[ik]
αk−1
αk

=
∑

βk−1,βk

(Qk−1)
αk−1

βk−1
Bk[ik]

βk−1

βk
(Qk)

αk
βk
,

which is exactly Xk[ik] = Qk−1Bk[ik]Q
T
k . This finishes the proof of the proposition.

Remark 2.3.4. A similar result holds for tensor rings, see [CLL20].
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2.4 Two-site DMRG: how to dynamically adapt the TT
ranks

The main limitation of the one-site DMRG algorithm is the inability to dynamically adapt the
TT ranks of the approximate solution during the course of the iterations. A small modification
of the one-site DMRG makes it possible to have more flexibility in the TT ranks. The main
idea is to solve the microstep in DMRG not only on one-site but on two neighbouring sites.

In that case, at each microstep k, the functional that is minimised is

j
(k)
2 :

{
Rn1×r0×r1 × · · · × Rrk−1×nk×nk×rk+1 × · · · × Rnd×rd−1×rd → R

(X1, . . . , Xk−1, X,Xk, . . . , Xd) 7→ J ◦ T̃Tk(X1, . . . , Xk−1, X,Xk, . . . , Xd)
(2.4.1)

where

T̃Tk :

{
Rn1×r0×r1 × · · · × Rrk−1×nk×nk×rk+1 × · · · × Rnd×rd−1×rd → Rn1···nd

(X1, . . . , Xk−1, X,Xk+1, . . . , Xd) 7→ (X1[i1] · · ·Xk−1[ik−1]X[ik, ik+1]Xk+1[ik+1] · · ·Xd[id]).

The TT rank adaptivity comes in the transformation of the microstep solution back to a suitable
TT form by a truncated SVD

(X
αk+1ik+1

αk−1ik
) = UεSεV

T
ε +O(ε),

where Uε ∈ Rrk−1nk×r, Sε ∈ Rr×r and Vε ∈ Rrk+1nk+1×r and r is chosen such that the truncated
SVD has error ε. Uε is (up to a reshape) the new TT core Xk and r is the corresponding TT
rank. The full algorithm is given in Algorithm 2.2.

In practice, the truncation level ε is used to monitor the error in DMRG. It can also be used
to extrapolate some quantities as the lowest eigenvalue as depicted in Figure 2.12 [WPAV14].
Theoretically, unlike the one-site algorithm, there is no convergence result on the two-site
algorithm (except in the case where no truncation is made).

2.5 DMRG on eigenvalue problems
DMRG is primarily used to solve eigenvalue problems. In that case, the functional to minimise
is J(x) = ⟨x,Hx⟩

⟨x,x⟩ . At each microstep, instead of solving a linear system, the following generalised
eigenvalue problem has to be solved for the lowest eigenvalue

PT
k HPkV = λPT

k PkV.

In that case, it is numerically beneficial to ensure the good orthogonality conditions for the
approximate solution in the TT form, so that PT

k Pk = id.
Apart from this change, the algorithms 2.1 and 2.2 can be modified in a straightforward

way to solve eigenvalue problems instead.
For multiple lowest eigenvalues, there are two main options
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Algorithm 2.2 Two-site DMRG with sweeps

Input: (X
(0)
1 , . . . , X

(0)
d ) in right-orthogonal TT representation with initial TT ranks

(r
(0)
0 , . . . , r

(0)
d ), εTT

Output: (X
(s)
1 , . . . , X

(s)
d ) ∈MTT≤r

approximation of the minimiser of J

function two-site-DMRG((X(0)
1 , . . . , X

(0)
d ), εTT)

s = 0
while not converged do

for k = 1, 2, . . . , d− 2 do ▷ Forward half-sweep

Y
(s+ 1

2
)

k = argmin

Vk∈R
r
(s+1

2 )

k−1
×nk×nk×r

(s)
k+1

j
(k)
2 (X

(s+ 1
2
)

1 , . . . , X
(s+ 1

2
)

k−1 , Vk, X
(s)
k+2, . . . , X

(s)
d ) (2.4.2)

U, S, V T = svdεTT

((
Y

(s+ 1
2
)

k

)βk+1ik+1

αk−1ik

)
▷ Truncated SVD of Yk

r
(s+ 1

2
)

k = rank of the SVD truncation to level εTT ▷ Update TT rank(
X

(s+ 1
2
)

k [ik]
)αk

αk−1
= Uαk

αk−1ik
▷ Update Xk(

X
(s)
k+1[ik+1]

)αk+1

αk
=

(
SV T)

αk+1ik+1
αk ▷ Update Xk+1

end for
for k = d− 1, d− 2, . . . , 2 do ▷ Backward half-sweep

Y
(s+1)
k = argmin

Vk∈R
r
(s+1

2 )

k−2
×nk×nk×r

(s+1)
k

j
(k)
2 (X

(s+ 1
2
)

1 , . . . , X
(s+ 1

2
)

k−1 , Vk, X
(s+1)
k+2 , . . . , X

(s+1)
d ) (2.4.3)

U, S, V T = svdεTT

((
Y

(s+ 1
2
)

k

)βk+1ik+1

αk−1ik

)
▷ Truncated SVD of Yk

r
(s+1)
k = rank of the SVD truncation to level εTT ▷ Update TT rank(
X

(s+1)
k+1 [ik+1]

)αk+1

αk
= V αk

αk+1ik+1
▷ Update Xk+1(

X
(s)
k [ik]

)αk

αk−1
=

(
US)αk

αk−1ik
▷ Update Xk

end for
s = s+ 1

end while
return (X

(s)
1 , . . . , X

(s)
d )

end function
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(a) Hubbard model with 10 sites (b) Hubbard model with 20 sites

Figure 2.12: Extrapolation of the ground-state energy Eε for the Hubbard model where Eε is
computed with the two-site DMRG algorithm with truncation ε

(i). deflate the computed eigenvalues

(ii). use the following characterisation of the k smallest eigenvalues (λ1, . . . , λk) of H

k∑
i=1

λi = min
X∈Rn1···nd×k

Tr(XTHX)

Tr(XTX)
.

This approach is described in [DKOS14]. Essentially, the TT representing X ∈ Rn1···nd×k

has an extra index accounting for the number of eigenvalues sought. At each microstep,
this index is “moved” to the next microstep during the QR/SVD step.



Chapter 3

Low-rank representation of solutions to
elliptic PDEs

In this chapter, we state results on the low-rank approximability for two types of problems

• source problems Hu = f ;

• eigenvalue problems Hu = Eu for E the smallest eigenvalue of H,

where H is a symmetric operator acting on the tensor space
⊗d

j=1Rn.
The main goal in this type of problems is to obtain an estimation of an approximate solution

with TT ranks that do not depend exponentially with the dimension of the problem d, or on
the quality of the approximation u− uapprox.

3.1 Source problems
For source problems, we will investigate the approximability by TT of the solution to the linear
equation Hu = f for operators of the form

H =
d∑

j=1

hj, (3.1.1)

where H is an operator acting on
⊗d

j=1Rn and hj is a one-body operator of the form idJj−1K⊗h⊗
idJj+1,dK. Such operators H will be referred to as one-body operators subsequently.

We are going to assume that h is a symmetric positive-definite matrix.

3.1.1 An approximation result by Chebyshev polynomials

With the assumption on h, the operator H is symmetric positive-definite. Moreover, we know
the lowest and the highest eigenvalues of H from those of h. Let λmin and λmax be respectively

49



50 CHAPTER 3. LOW-RANK SOLUTIONS TO ELLIPTIC PDE

the lowest and largest eigenvalue of h. Then since H is a one-body operator, it is diagonalisable
in the tensor product of the eigenvectors of h. Thus we have that dλmin is the lowest eigenvalue
of H and dλmax its largest eigenvalue. This means that the condition number of H is equal
to λmax

λmin
, i.e. the condition number of h. In particular, it is independent with respect to the

dimension d. From this observation, we can deduce a bound on the TT rank of an approximation
of the solution to the linear system Hu = f .

Theorem 3.1.1 ([KU16]). Let H be a one-body operator, i.e. of the form

H =
d∑

j=1

hj,

where H is an operator acting on
⊗d

j=1Rn and hj is a one-body operator of the form id1:j−1⊗h⊗
idj+1:d. Suppose that h is a symmetric positive-definite matrix. Let κ be the condition number
of h. Let ∥ · ∥H be the norm on

⊗d
j=1Rn be defined by

∀x ∈
d⊗

j=1

Rn, ∥x∥2H =
1

d2
⟨x,Hx⟩.

Let f ∈ ⊗d
j=1 Rn such that ∥f∥ = 1 and let (fI) ∈ Rdn be the coefficients of f in the

canonical basis. Suppose that (fI) has a TT representation with TT ranks bounded by rf .
Then there exists a constant C > 0 independent of d for all 0 < ε < 2∥u∥H, there is

uε ∈
⊗d

j=1 Rn such that ∥u− uε∥H ≤ ε where uε has TT ranks bounded by

1

2

( C√
d ε

)1/log2(
√
κ+1√
κ−1

)

rf

in the canonical basis of
⊗d

j=1Rn.

Proof. The proof relies on classical estimates for the solution of the linear system Hu = f
where H is symmetric positive-definite with Krylov methods.

In particular, we have a bound of the form

∥u− u(q)∥H ≤ 2
(√κ− 1√

κ+ 1

)q

∥u− u(0)∥H,

where u(q) = Pq(H)(f −Hu(0)) for some polynomial of degree q and κ is the condition number
of H.

Selecting u(0) = 0, we have that the TT rank of such a u(q) is bounded by 2q−1rf as H has
a TTO representation of rank 2. Hence to have ∥u− u(q)∥H ≤ ε, one needs

q ≥ −
log2

(
ε

2∥u∥H )

log2
(√

κ+1√
κ−1

) .
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Thus the TT rank of an approximation uε such that ∥u − uε∥H ≤ ε is bounded by
1
2

(
2∥u∥H

ε

)1/ log2(
√
κ+1√
κ−1

)

rf .
To finish the proof, we simply notice that

∥u∥2H = ⟨u,Hu⟩ = ⟨u,f⟩ ≤ ∥u∥∥f∥ ≲ 1√
d
∥u∥H∥f∥,

thus ∥u∥H ≲ 1√
d
.

This finishes the proof of this theorem.

The bound on the ranks still depend on the local dimension n via the condition number of
the matrix h, which for PDE discretisations grows with n. The next subsection deals with this
issue.

3.1.2 An approximation result independent of the local dimension n

It is possible to derive a bound on the TT ranks that are independent of the local dimension n.

Theorem 3.1.2 ([DDGS16],[Bac23, Theorem 4.6]). Let H be a one-body operator, i.e. of the
form

H =
d∑

j=1

hj,

where H is an operator acting on
⊗d

j=1Rn and hj is a one-body operator of the form idJj−1K⊗h⊗
idJj+1,dK. Suppose that h is a symmetric positive-definite matrix with eigenvalues bounded from
below by λ > 0.

Let f ∈⊗d
j=1Rn and (fI) ∈ Rnd be the coefficients of f in the canonical basis. Suppose that

(fI) has a TT representation with TT ranks bounded by rf . Let u ∈⊗d
j=1Rn be the solution

to Hu = f .
Then for all ε > 0, there is uε ∈

⊗d
j=1Rn such that ∥u− uε∥ ≤ ε where uε has TT ranks

bounded by 1
π2 log

(dλε∥f∥
16

)2
rf in the canonical basis of

⊗d
j=1 Rn.

Remark 3.1.3. The d-dimensional discrete Laplacian is a one-body operator of the form (3.1.1),
hence for low-rank RHS, the solution to the linear problem has a low-rank approximation in the
TT format.

The main idea of the proof is to use the spectral decomposition of H and an approximation
of 1/x for x > 0 as a sum of exponentials:

1

x
≈

K∑
k=1

ωke
−αkx, for some ωk ∈ R and αk > 0. (3.1.2)
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Such an approximation can be obtained by noticing that for x > 0, we have

1

x
=

∫ ∞

0

e−xt dt,

and using a quadrature rule for the integral.
Let (λi, ϕi) ∈ R×Rn be the eigenpairs of h, then the eigenvalues ΛI and the corresponding

eigenvectors ΦI of H are given by

ΛI =
d∑

k=1

λik , ΦI = ϕi1 ⊗ · · · ⊗ ϕid .

Then the solution to the linear system Hu = f is given by

u =
∑
I

1

ΛI

f̃IΦI .

Since 1
ΛI

is not separable, the TT rank of u may be large. However it can be approximated by

u =
∑
I

1

ΛI

f̃IΦI ≈
K∑
k=1

∑
I

ωke
−αkΛI f̃IΦI .

Now since ΛI =
∑d

j=1 λij , we have that e−αkΛI =
∏d

j=1 e
−αkλij , which is now separable in each

variable. Thus the TT rank of the approximation of u is simply bounded by Krf .
The factor K is related to the quality of the approximation of 1/x by a sum of the expo-

nential (3.1.2). For this problem, we have the following bound.

Proposition 3.1.4 ([Hac19],[Bac23, Corollary 4.5]). Let a > 0. Then for all K ∈ N, there are
ωk, αk > 0, 1 ≤ k ≤ K such that

sup
t∈[a,∞)

∣∣∣1
x
−

K∑
k=1

ωke
−αkt

∣∣∣ ≤ 16

a
e−π

√
K . (3.1.3)

We can now give the proof of Theorem 3.1.2.

Proof of Theorem 3.1.2. Let ũ be defined as

ũ =
K∑
k=1

ωke
−αkHf ,

where (ωk), (αk) are chosen such that supt∈[Lλ,∞)

∣∣∣ 1x −∑K
k=1 ωke

−αkt
∣∣∣ ≤ ε with λ the smallest

eigenvalue of h. This means that K ≥ 1
π2 log

(dλε∥f∥
16

)2. Then we have

∥u− ũ∥ ≤ sup
t∈[dλ,∞)

∣∣∣1
x
−

K∑
k=1

ωke
−αkt

∣∣∣∥f∥.
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For K ≥ 1
π2 log

(dλε∥f∥
16

)2, we thus have ∥u− ũ∥ ≤ ε.
It remains to show that ũ has TT ranks at most 1

π2 log
(dλε∥f∥

16

)2
rf in the basis of the

eigenfunctions (ΦI) of H. As H =
∑d

j=1 hj where hj commute two-by-two, then e−αkH =⊗d
j=1 e

−αkh. Hence the TTO representation of
⊗d

j=1 e
−αkh is of rank 1. Thus e−αkHf has the

same TT rank as f . This finishes the proof.

Remark 3.1.5. The bound on the TT rank of the approximate solution does not depend on the
dimension of the local space Rn. We have thus the same bound at the continuous level for the
ambient space norm. For elliptic operators, these bounds would be L2 to L2 bounds, however it
would be more natural to have H−1 to H1 bounds. With a more careful analysis, it is possible
to obtain H−1+s to H1 bounds, with s ∈ (0, 1) (see [DDGS16, Prop. 1] or [Bac23, Thm. 4.6]).
There is no proof in the critical case s = 0 of a low-rank approximation.

3.2 Eigenvalue problems
Eigenvalue problems have attracted more attention as DMRG and tensor trains in general have
been applied in the context of quantum physics, where the properties of the system are derived
from the eigenvector associated to the lowest eigenvalue of the many-body operator.

The first rigorous work on the approximability of eigenvectors by low-rank TT is due to
Hastings [Has07]. Later, another strategy of proof has been proposed by Arad et al. [AKLV13].

We restrict ourselves to results for two-body Hamiltonians with nearest neighbour interac-
tions of the form

H(d) =
d−1∑
j=1

Wj (3.2.1)

where H(d) is an operator acting on
⊗d

j=1Rn and Wj is a two-body operator of the form
idJj−1K⊗W ⊗ idJj+2,dK.

The main assumption needed to prove that the ground-state can be approximated well by
a low-rank TT is the following.

Assumption 3.2.1. Let H(d) be defined by (3.2.1). We assume that H(d) has a unique
nondegenerate ground-state Ψ

(d)
0 and that H(d) has a spectral gap γ independent of d, i.e.

E
(d)
1 − E

(d)
0 ≥ γ for all d where E

(d)
0 and E

(d)
1 are the lowest and second lowest eigenvalue

of H(d).

The approximation result on the ground-state can be written as follows.

Theorem 3.2.2 ([Has07, AKLV13]). Let H(d) be given by (3.2.1) satisfying Assumption 3.2.1.
Then there is a function r : (0,∞) → N such for any d ∈ N and ε > 0, there is a TT
approximation TTr(ε)Ψ

(d)
0 with TT rank r(ε) of Ψ(d)

0 such that

∥TTr(ε)Ψ
(d)
0 −Ψ

(d)
0 ∥ ≤ ε.
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Remark 3.2.3. Such approximation results are called area laws in physics. These approxima-
tion results in the physics litterature are usually written in terms of the ground-state projector
|Ψ(d)

0 ⟩⟨Ψ(d)
0 | which is an operator acting on

⊗d
j=1Rn. Looking at the partial trace of the ground-

state projector on a block of neighbouring sites, it is possible to show that the approximation of
the partial trace of the ground-state projector does not depend on the size of the block, but only
on the “area” of the interaction, which in the case of the Hamiltonians considered here, is a con-
stant. For interactions in higher dimension, e.g. on a 2D, 3D lattice, it is a folklore result that
these types of result hold also for ground-state of nearest neighbour interactions Hamiltonians.

3.2.1 Hastings area law

The full proof is given in Section 3.3 for the interested reader. We here give the essential ideas
of the proof. First, we write an approximation of the projector onto the ground-state, using
the energy gap assumption

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | ≈
1√
2πq

∫
R
ei(H

(d)−E0)te−
t2

2q dt, (3.2.2)

with q sufficiently large.
The Hamiltonian H(d) is a sum of operators that are “almost” commuting, as only neigh-

bouring operators do not commute. Hence if HA =
∑

j∈AWj, HAc = H −HA although we
are not allowed to write eiH

(d)t = eiHAteiHAc t, we can quantify the difference in a rigorous way.
The trick is to write

eiH
(d)t = eiHL+Rt+iHM te−iHL+RteiHL+Rt,

with HM =
∑

m−ℓ≤j≤m+ℓWj, HL+R =
∑

j<m−ℓ;m+ℓ<j Wj and realise that eiHL+Rt+iHM te−iHL+Rt

is the solution to {
iU ′(t) = U(t)eiHL+RtHMe−iHL+Rt

U(0) = id .

For small values of t by the Lieb-Robinson bound, proved for Hamiltonians with nearest neigh-
bour interactions, eiHL+RtHMe−iHL+Rt has support exponentially close to the support of HM .

Denoting ŨM(t) = eiHL+RtHMe−iHL+Rt, we have then for small t

eiH
(d)t ≈ ŨM(t)eiHL+Rt,

with ŨM(t) and eiHL+Rt having exponentially small overlap.

3.2.2 AGSP

A later strategy to obtain these results have been through the approximate ground-state pro-
jector (AGSP) construction, first proposed in [AKLV13]. As opposed to the proof by Hastings,
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where the central tool is the Lieb-Robinson bound, the AGSP is the result of an algorithm
which terminates in finite time with polynomial complexity. This algorithm is called the rig-
orous renormalisation group (RRG) [RVM17]. It provides an alternative algorithm to DMRG
for the computation of the ground-state energy. The scheme has been tested numerically
in [RVM17, BMG+21], where RRG looked more stable than DMRG, but less efficient numeri-
cally. The other drawback of the RRG is that it is yet unclear how to adapt this algorithm to
solve linear systems.

The idea of the proof uses a polynomial approximation of the ground-state projector. Indeed,
because of the nearest neighbour interaction, the Hamiltonian H(d) has a TTO representation
with ranks R independent of d. From algebraic properties of the TTO (see Chapter 2), the TTO
representation of Pn(H) of degree n will have a TTO representation with TT ranks bounded
by Rn+1.

Suppose that H(d) is of the form (3.2.1) such that it has a nondegenerate ground-state. The
ground-state projector can be written

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | ≈ Tm(H),

where Tm is the rescaled Chebyshev polynomial of degree m such that Tm(E0) = 1 and it is the
solution to

∥Tm∥∞ = min
Pm∈Rm[X]

max
E1−E0≤x≤Emax−E0

|Pm(x)|.

The error on the approximation is bounded by

∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 | − Tm(H)∥ ≤ 2
(√κ− 1√

κ+ 1

)m

,

where κ = Emax−E0

E1−E0
. For this problem, typically Emax − E0 would scale as the number of ten-

sorised spaces L but the gap would remain bounded. Hence to have ∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 |−Tm(H)∥ ≤ ε,
n would have to be of the order

√
d log(ε), thus the TTO rank of the approximate projector

would be of the order R
√
d, where R is the TTO rank of H.

This strategy does not beat the curse of dimension, because the norm of the operator scales
as d. An additional ingredient is required to prove an area law like Theorem 3.2.2, which is a
truncation of the high-frequency components of the Hamiltonian.

Let J ⊂ {1, . . . , d}, HJ =
∑

j∈J Wj and EJ
0 its ground-state eigenvalue. For τ > 0,

let ΠEJ
0 +τ be the spectral projector associated to the eigenvalues of HJ below EJ

0 + τ and
Π⊥

EJ
0 +τ

= id−ΠEJ
0 +τ . The truncated Hamiltonian on J is then defined by

H̃J = HJΠEJ
0 +τ + (τ + EJ

0 )Π
⊥
EJ

0 +τ
. (3.2.3)

By definition, ∥H̃J − EJ
0 ∥ ≤ τ .

The core idea of the proof is to establish the following result on the overlap between the
ground-state of the full Hamiltonian H(d) and the projector onto the high-frequency components
of a part of H(d).
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Lemma 3.2.4 ([AKL16, Theorem 2.3]). For J ⊂ {1, . . . , d−1}, let EJ
0 and E

(d)
0 be respectively

the lowest eigenvalue of HJ =
∑

j∈J Wj and H(d). Let EJ
0 be the lowest eigenvalue of HJ . Let

Π[EJ
0 +E,EJ

0 +E′] be the spectral projector of HJ associated to the eigenvalues in [EJ
0 +E,EJ

0 +E ′]

(E < E ′). Let P
[E

(d)
0 ,E

(d)
0 +ε]

be the spectral projector of H(d) associated to the eigenvalues in

[E
(d)
0 , E

(d)
0 + ε]. Then there are constants C and α independent of E,E ′, ε,J such that we have

∥Π
[EJ

0 +E,EJ
0 +E′]P[E

(d)
0 ,E

(d)
0 +ε]
∥ ≤ C exp

(
−α

(
E − ε+ EJ

0 − E
(d)
0

))
. (3.2.4)

The proof of this lemma explicitly exploits the nearest neighbour interaction structure of
the Hamiltonian H(d).

Sketch of the proof of Theorem 3.2.2 via AGSP

The proof of the area law requires a careful splitting of the Hamiltonian in two parts, such that
the corresponding truncated Hamiltonian H̃J satisfies the following properties

(i). the ground-state of H̃J is exponentially close to Ψ
(d)
0 ;

(ii). for a given cut k, the polynomial Tm(H̃J ) has a controlled TTO rank at the cut k.

We want to show the following result.

Proposition 3.2.5. There is a constant α > 0 such that for each 1 ≤ k ≤ d and all ε > 0,
there is an approximation of the ground-state projector |Ψ(d)

0 ⟩⟨Ψ(d)
0 | such that

∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 | − P̃0∥ ≤ ε, (3.2.5)

where (P̃0)
j1...jd
i1...id

∈ Rnd×nd such that its reshape (P̃0)
ik+1jk+1,...,idjd
i1j1,...,ikjk

∈ Rn2k×n2(d−k) has rank bounded
by CRα(log ε)2 where R is the TTO rank of H(d) and C an irrelevant constant.

This means that the ground-state projector |Ψ(d)
0 ⟩⟨Ψ(d)

0 | has a TTO approximation with
error ε of TT rank Rα(log ε)2 . We then have the same bound on the TT approximation of the
ground-state Ψ

(d)
0 .

Let k ∈ Jd− 1K and let H̃ be the truncated Hamiltonian defined by

H̃ = H̃J +HJ c , (3.2.6)

where HJ c =
∑

k−ℓ≤j≤k+ℓ Wj, HJ = H−HJ c and H̃J = HJΠEJ
0 +τ + (τ +EJ

0 )Π
⊥
EJ

0 +τ
, with

ΠEJ
0 +τ being the spectral projector of HJ with eigenvalues below EJ

0 + τ . Let Ψ̃0 be the
ground-state of H̃.

The proof has now two steps

(i). we show that ∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 | − |Ψ̃0⟩⟨Ψ̃0|∥ ≤ C exp(−α(τ − 2ℓ))

(ii). we prove that there is P̃0 such that ∥|Ψ̃0⟩⟨Ψ̃0| − P̃0∥ ≤ C exp
(
−α
√
ℓ
)

for irrelevant

constants α,C and where P̃0 has a reshape at the cut k with rank bounded by Rℓ+1.
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Proof of step (i) The first step essentially follows from Lemma 3.2.4. Indeed we have

∥(H̃− E0)Ψ
(d)
0 ∥ = ∥(H̃−H)Ψ

(d)
0 ∥ = ∥(HJ − τ − EJ

0 )ΠEJ
0 +τΨ

(d)
0 ∥.

Now we write

∥(HJ − τ − EJ
0 )ΠEJ

0 +τΨ
(d)
0 ∥ ≤

∑
k≥0

∥(HJ − τ − EJ
0 )Π[τk+1,τk]Ψ

(d)
0 ∥

≤ C exp
(
−α(τ − (E0 − EJ

0 ))
)∑

k≥0

|τk − τ − EJ
0 |e−ατk ,

where we have used Lemma 3.2.4. Picking the right increasing sequence (τk), shows that

∥(H̃− E0)Ψ
(d)
0 ∥ ≤ C exp

(
−α(τ − (E0 − EJ

0 ))
)
. (3.2.7)

Using the positivity of the interactions (Wj), we have that E0 − EJ
0 ≤ 2∥W∥ℓ. From usual

estimates on approximate eigenpairs [Saa11, Theorem 3.9], we then have that

∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 | − |Ψ̃0⟩⟨Ψ̃0|∥ ≤
∥(H̃− E0)Ψ

(d)
0 ∥2

(Ẽ1 − E0)2
≤ C exp(−α(τ − 2ℓ)), (3.2.8)

where Ẽ1 is the second lowest eigenvalue of H̃ and where additionally one needs to prove that
Ẽ1 − E0 is bounded uniformly from below. This follows from Lemma 3.2.4 again and the
spectral gap assumption 3.2.1. The proof is similar as to show that Ẽ0 − E0 are close. This
concludes the proof of the first step.

Proof of step (ii) Using the nearest neighbour nature of Wj, we have that for m < ℓ, Tm(H̃)
has a TTO rank bounded by Rℓ+1.

By definition of the truncated Hamiltonian H̃, we have that ∥H̃−EJ
0 ∥ ≤ (2ℓ∥W∥+ τ). By

standard estimates of Chebyshev polynomials, we have that

∥|Ψ̃0⟩⟨Ψ̃0| − Tm(H̃)∥ ≤ 2
(√κ̃− 1√

κ̃+ 1

)m

,

with κ̃ = Ẽmax−Ẽ0

Ẽ1−Ẽ0
where Ẽmax is the largest eigenvalue of H̃ and Ẽ0, Ẽ1 the lowest and second

lowest eigenvalue of H̃.
From Eq. (3.2.7) and the gap assumption on the Hamiltonian H, we have that κ̃ ≤ C(ℓ+τ)

for some constant C independent from H̃. Hence we get

∥|Ψ̃0⟩⟨Ψ̃0| − Tm(H̃)∥ ≤ C
(
1− C√

ℓ+ τ

)m

.
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Choosing τ = O(ℓ) and noting that (1− a
n
)n = exp(−a) + o(1), we deduce that

∥|Ψ̃0⟩⟨Ψ̃0| − Tℓ−1(H̃)∥ ≤ C exp
(
−C
√
ℓ
)
. (3.2.9)

Picking τ = 2ℓ+
√
ℓ and combining Eq. (3.2.8) and Eq. (3.2.9), we obtain

∥|Ψ(d)
0 ⟩⟨Ψ(d)

0 | − Tℓ−1(H̃)∥ ≤ C exp
(
−α
√
ℓ
)
, (3.2.10)

where Tℓ−1(H̃) has rank Rℓ at cut k. This finishes the proof of Proposition 3.2.5.

3.3 Hastings area law

3.3.1 Hamiltonian with nearest neighbour interactions

The NNI Hamiltonian considered is of the form

H(d) =
d−1∑
j=1

Wj, (3.3.1)

where H(d) is an operator acting on
⊗d

j=1 RR
n and Wj is a two-body operator of the form

idJj−1K⊗W ⊗ idJj+2,dK.

Assumption 3.3.1. We assume that for each d, the many-body Hamiltonian H(d) has a unique
ground-state Ψ

(d)
0 with eigenvalue 0 and a spectral gap γ > 0 independent of d.

If the gap closes not too fast, it is possible to still get a polynomial bound on the TT
approximation of the ground-state instead of an exponential one.

Remark 3.3.2. Hastings’ proof also holds if we relax the form of the two-body operators Wj

to be such that idJj−1K⊗Wj ⊗ idJj+2,dK with Wj acting on Rn⊗Rn. In that case, if the operators
Wj satisfy the following conditions

• the operators Wj are uniformly bounded, i.e. there is a constant C such that for all
j, ∥Wj∥ ≤ C;

• the commutators are uniformly bounded, i.e. there is a constant J such that for all j,
∥[Wj,Wj+1]∥ ≤ J .

The first assumption can actually be lifted and is taken for simplicity. As long as the com-
mutators [h̃j, h̃j+1] are uniformly bounded, the proof can be adapted to unbounded operators
(see [Ali21]).
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3.3.2 Lieb-Robinson bounds

An essential ingredient of the area law by Hastings is the repeated use of the Lieb-Robinson
bound for NNI Hamiltonians. This bound describes how the correlation evolves for local oper-
ators.

Proposition 3.3.3 (Lieb-Robinson bound [NS06]). Let A ∈ L (
⊗

i∈I Rn) and B ∈ L (
⊗

j∈J Rn)

be two operators with I ∩J = ∅. Let A(t) = eiH
(d)tA⊗ idXc e−iH(d)t with H(d) given by (3.3.1).

Then there are constants c, a, v > 0 independent of A, B or d such that

∥[A(t), idI ⊗B]∥ ≤ c|I||J |∥A∥∥B∥ exp(−a(d(I, J)− v|t|)), (3.3.2)

where d(I, J) = mini∈I,j∈J |i− j|.
The Lieb-Robinson bound is stated here in the special case of a one-dimensional NNI Hamil-

tonian but it holds for more general local interactions types [NS06]. In that case, the distance
d is replaced by the natural distance of the interaction picture.

The Lieb-Robinson bound enables to state that the evolution of a local operator remains
local by the next lemma.

Lemma 3.3.4. Let A ∈ L (X⊗Y). We assume that Y is finite-dimensional. Suppose there is
ε > 0 such that for all B ∈ L (Y), we have

∥[A, idX⊗B]∥ ≤ ε∥B∥. (3.3.3)

Then there is an operator A1 ∈ L (X) such that

∥A−A1 ⊗ idY ∥ ≤ ε. (3.3.4)

Moreover, if A is self-adjoint, then A1 can also be chosen self-adjoint.

Proof of Lemma 3.3.4. The operator A1 is explicitely constructed: take A1 = 1
dimY

TrY A =∫
U (Y)

idX⊗U∗A id⊗U dU where dU is the uniform Haar measure on the unitary matrices of
Y. Then we have

∥A−A1 ⊗ idY ∥ =
∥∥∥∫

U (Y)

idX⊗U∗[A, id⊗U ] dU
∥∥∥ ≤ ε.

Corollary 3.3.5. Let A ∈ L (
⊗

i∈I Rn), ℓ > 0 and Ĩ = {̃i | ∃ i ∈ I, |i − ĩ| ≤ ℓ}. Let
A(t) = eiH

(d)tA ⊗ idIc e
−iH(d)t with H(d) given by (3.3.1). Then for all t ∈ R, there is an

operator Aℓ(t) ∈ L (
⊗

i∈Ĩ Rn) such that

∥A(t)−Aℓ(t)⊗ idĨc ∥ ≤ d|I|∥A∥ exp(−a(ℓ− v|t|)). (3.3.5)

If A is self-adjoint, then Aℓ(t) is self-adjoint for all t.

Proof. Combining Lemma 3.3.4 with the Lieb-Robinson bonud (3.3.2), we directly get the
result.
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3.3.3 Main theorem and Hastings area law

The main result in Hastings seminal paper states that the ground-state projector can be expo-
nentially well approximated using an almost tensor product of operators with an overlapping
domain of size ℓ independent of the size of the system.

Theorem 3.3.6. Let H(d) be the Hamiltonian defined in (3.3.1) satisfying the assumptions 3.3.1.
For any 1 ≤ j ≤ d and any ℓ ≥ 0, there are operators OL ∈ L (H1:j), OM ∈ L (Hj−ℓ:j+ℓ) and
OR ∈ L (Hj+1:d) with ∥OM∥, ∥OL∥, ∥OR∥ ≤ 1 and there is β > 0 independent of ℓ and d and
C > 0 depending polynomially on d such that∥∥(id1:j−ℓ−1⊗OM ⊗ idj+ℓ+1:d)(OL ⊗ idj+1:d)(id1:j ⊗OR)− |Ψ(d)

0 ⟩⟨Ψ(d)
0 |∥ ≤ C exp(−βℓ). (3.3.6)

From eq. (3.3.6), the area law and the TT approximation of the ground-state follows.

Corollary 3.3.7. Let Ψ
(d)
0 be the ground-state wave function of H(d) given by (3.3.1). Then

the following assertions are true:

(i). there is a constant S independent of L such that Sα(|Ψ(d)
0 ⟩⟨Ψ(d)

0 |) ≤ S;

(ii). for any ε > 0, there is a TT approximation TTrΨ
(d)
0 with TT rank r independent of d of

Ψ
(d)
0 such that

∥TTrΨ
(d)
0 −Ψ

(d)
0 ∥ ≤ ε.

Remark 3.3.8. It is possible to choose the operators OL, OM and OR to be nonnegative. By
construction, OL and OR are nonnegative and by a little trick, OM can also be chosen nonneg-
ative [Has07].

Sketch of an almost-proof of Theorem 3.3.6 The proof of the theorem relies on the
following approximation of the ground-state projection

ρq =
1√
2πq

∫
R
eiH

(d)te
− t2

2q dt, (3.3.7)

where q > 0 is fixed later on. Using the spectral gap assumption, we see that

∥ρq − |Ψ(d)
0 ⟩⟨Ψ(d)

0 |∥ ≤ e−
1
2
γ2q, (3.3.8)

where γ is the spectral gap.
Using the NNI structure of the Hamiltonian, we can write

H = HL+R +HM ,
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with HM =
∑j+

ℓ
2

k=j− ℓ
2

hk and HL+R =
∑

k<j− ℓ
2

hk +
∑

k>j+
ℓ
2

hk. The evolution eiH
(d)t can be

written
eiH

(d)t = eiHL+Rt+iHM te−iHL+RteiHL+Rt.

The trick is to realise that eiHL+Rt+iHM te−iHL+Rt is the solution to{
iU ′(t) = U(t)eiHL+RtHMe−iHL+Rt

U(0) = id .

Since HM = id
1:j− ℓ

2

⊗H̃M⊗ id
j+

ℓ
2
+1:d

, using Corollary 3.3.5, then for all t ∈ R, there is H(ℓ)
M (t) ∈

L (Hj−ℓ:j+ℓ) such that∥∥eiHL+RtHMe−iHL+Rt − id1:j−ℓ−1⊗H(ℓ)
M (t)⊗ idj+ℓ+1:d

∥∥ ≤ 2dℓ∥HM∥ exp
(
−a( ℓ

2
− v|t|)

)
.

Thus the operator eiHL+Rt+iHM te−iHL+Rt can be approximated by

eiHL+Rt+iHM te−iHL+Rt = T exp
(∫ t

0

id1:j−ℓ−1⊗H(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
,

where for an operator A(t), T exp
( ∫ t

0
A(τ) dτ

)
is the time-ordered exponential defined by [RS75,

Chapter X.12]

T exp
(∫ t

0

A(τ) dτ
)
= lim

N→∞
eA(tN )∆teA(tN−1)∆t · · · eA(t1)∆t, tk = k∆t, ∆t =

t

N
.

Using a Duhamel formula, the approximation of the ground-state projector is

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | =
1√
2πq

∫
R
eiH

(d)te
− t2

2q dt+O(e−
1
2
γ2q)

=
1√
2πq

∫
R
T exp

(∫ t

0

id1:j−ℓ−1⊗H(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
eiHL+Rte

− t2

2q dt

+O(e−
1
2
γ2q + q3/2e−aℓ).

We would be done if it were possible to write eiHL+Rt ≃ OL⊗ idj+1:d id1:j ⊗OR for OL ∈ L (H1:j)
and OR ∈ L (Hj+1:d) that are independent of t. In order to do so, another transformation is
applied to HM and HL+R to guarantee that such a step is justified.

Proof of Theorem 3.3.6
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Lemma 3.3.9. Let q > 0 and ρq be defined by

ρq =
1√
2πq

∫
R
eiH

(d)te
− t2

2q dt. (3.3.9)

Then we have
∥ρq − |Ψ(d)

0 ⟩⟨Ψ(d)
0 |∥ ≤ e−

1
2
γ2q, (3.3.10)

where γ is the spectral gap.

Proof. This follows from the spectral gap assumption 3.3.1 and the fact that the Fourier trans-

form of t 7→ 1√
2πq

e
− t2

2q is ω 7→ e−
1
2
ω2

.

Lemma 3.3.10. For 1 ≤ j ≤ d and ℓ > 0, let

HM =

j+
ℓ
3∑

k=j− ℓ
3

hk, HL =
∑

k<j− ℓ
3

hk, HR

∑
k>j+

ℓ
3

hk.

For q > 0, let

HM(q) =
1√
2πq

∫
R
e−iH(d)tHMeiH

(d)te
− t2

2q dt− ⟨Ψ(d)
0 , HMΨ

(d)
0 ⟩ (3.3.11)

HL(q) =
1√
2πq

∫
R
e−iH(d)tHLe

iH(d)te
− t2

2q dt− ⟨Ψ(d)
0 , HLΨ

(d)
0 ⟩ (3.3.12)

HR(q) =
1√
2πq

∫
R
e−iH(d)tHRe

iH(d)te
− t2

2q dt− ⟨Ψ(d)
0 , HRΨ

(d)
0 ⟩. (3.3.13)

Then for all q > 0, we have

H = HL(q) +HM(q) +HR(q), (3.3.14)

and
∥HM(q)Ψ

(d)
0 ∥, ∥HL(q)Ψ

(d)
0 ∥, ∥HR(q)Ψ

(d)
0 ∥ ≤ γJe−

1
2
γ2q. (3.3.15)

Proof. Since H = HL +HM +HR, eq. (3.3.14) is clear. For eq. (3.3.15), we have

HM(q)Ψ
(d)
0 =

1√
2πq

∫
R
e−iH(d)tHMeiH

(d)tΨ
(d)
0 e

− t2

2q dt− ⟨Ψ(d)
0 , HMΨ

(d)
0 ⟩Ψ(d)

0

=
1√
2πq

∫
R
e−iH(d)tP⊥

0 HMΨ
(d)
0 e

− t2

2q dt,
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where P⊥
0 = id−|Ψ(d)

0 ⟩⟨Ψ(d)
0 |. We have

∥P⊥
0 HMΨ

(d)
0 ∥ ≤ γ∥HHMΨ

(d)
0 ∥ ≤ γ∥[H,HM ]Ψ

(d)
0 ∥ ≤ γJ.

Hence using again the spectral gap of H(d), we obtain

∥HM(q)Ψ
(d)
0 ∥ ≤ γJe−

1
2
γ2q. (3.3.16)

The same proof applies to HL and HR.

The operators HL(q), HM(q) and HR(q) do not have the same support as HL, HM and
HR. In fact, their support is now the full Hilbert space H1:d. However, this can be solved by
truncating the operators using Corollary 3.3.5.

Lemma 3.3.11. There are self-adjoint operators H̃L(q), H̃M(q) and H̃R(q) with respective
support in H1:j, Hj−2ℓ/3:j+2ℓ/3 and Hj+1:d such that

∥HM(q)− H̃M(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2,

∥HL(q)− H̃L(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2,

∥HR(q)− H̃R(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2.

Proof. We only give the proof for H̃M(q) as it is identical for the other truncations. By Corol-
lary 3.3.5, there is an operator H

(ℓ)
M (t) with support in Hj−2ℓ/3:j+2ℓ/3 such that

∥e−iH(d)tHMeiH
(d)t −H

(ℓ)
M (t)∥ ≤ ∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

Using that for p, q > 0,
∫∞
0

epte
− t2

2q dt ≲ q1/2ep
2q/2.We deduce that there is an operator H̃M(q)

such that

∥HM(q)− H̃M(q)∥ ≲ ∥h∥ℓ2de−aℓ/3eqa
2v2/2.

Lemma 3.3.12. Let q > 0 and ρ̃q be given by

ρ̃q =
1√
2πq

∫
R
ei(H̃L(q)+H̃M (q)+H̃R(q))te

− t2

2q dt,

where H̃L(q), H̃M(q) and H̃R(q) are defined in Lemma 3.3.11. Then we have∥∥ρ̃q − |Ψ(d)
0 ⟩⟨Ψ(d)

0 |
∥∥ ≲ ∥h∥ℓ2dq1/2e−aℓ/3eqa

2v2/2 + e−
1
2
γ2q. (3.3.17)
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Proof. The proof relies on a Duhamel formula:

∥ρ̃q − |Ψ(d)
0 ⟩⟨Ψ(d)

0 |∥ ≤ ∥ρ̃q − ρq∥+ ∥ρq − |Ψ(d)
0 ⟩⟨Ψ(d)

0 |∥,

≤ 1√
2πq

∫
R
∥ei(H̃L(q)+H̃M (q)+H̃R(q))t − eiH

(d)t∥e−
t2

2q dt+ e−
1
2
γ2q,

≲ ∥h∥ℓ2dq1/2e−aℓ/3eqa
2v2/2 + e−

1
2
γ2q,

where we have used Lemma 3.3.11.

Lemma 3.3.13. Let H̃L(q) and H̃R(q) be the operators defined in Lemma 3.3.11. Let α > 0
and OR(q) and OL(q) be the following spectral projections

OL(q) =
∑
|λ|≤α

|Φ(L)
λ ⟩⟨Φ

(L)
λ |, OR(q) =

∑
|λ|≤α

|Φ(R)
λ ⟩⟨Φ

(R)
λ |, (3.3.18)

where (Φ
(L)
λ ) and (Φ

(R)
λ ) are the normalised eigenvectors of H̃L(q) and H̃R(q). Then we have

∥OROLΨ
(d)
0 −Ψ

(d)
0 ∥ ≤

1

α

(
∥H̃L(q)−HL(q)∥+ ∥H̃R(q)−HR(q)∥+ ∥HLΨ

(d)
0 ∥+ ∥HRΨ

(d)
0 ∥

)
,

(3.3.19)
and

∥(ei(H̃L(q)+H̃R(q))t − id)OLOR∥ ≤ 2α|t|. (3.3.20)

Proof. We first prove the estimate (3.3.19). Since OL(q) and OR(q) commute and are bounded
operators by 1, we have

∥OLORΨ
(d)
0 −Ψ

(d)
0 ∥ ≤ ∥OLΨ

(d)
0 −Ψ

(d)
0 ∥+ ∥ORΨ

(d)
0 −Ψ

(d)
0 ∥. (3.3.21)

We have

∥OLΨ
(d)
0 −Ψ

(d)
0 ∥ ≤

∥∥∥∫
|λ|≥α

dP
H̃L(q)
λ (Ψ

(d)
0 )

∥∥∥
≤ 1

α

∥∥∥∫
|λ|≥α

λdP
H̃L(q)
λ (Ψ

(d)
0 )

∥∥∥
≤ 1

α
∥H̃L(q)Ψ

(d)
0 ∥

≤ 1

α

(
∥H̃L(q)−HL(q)∥+ ∥HLΨ

(d)
0 ∥

)
.

Estimate (3.3.20) follows from the definition of OL and OR.

A final lemma is needed before completing the proof of Theorem 3.3.6 about the splitting
of the evolution ei(H̃L(q)+H̃M (q)+H̃R(q))t.
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Lemma 3.3.14. With the notation in Lemma 3.3.11, there is a family of operators H̃
(ℓ)
M (t) ∈

L (Hj−ℓ:j+ℓ) such that∥∥∥ei(H̃L(q)+H̃M (q)+H̃R(q))t − T exp
(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
ei(H̃L(q)+H̃R(q))t

∥∥∥
≤ t∥h∥ℓ2d exp(−a(ℓ/3− v|t|)), (3.3.22)

where for a family of operators A(t), T exp
( ∫ t

0
A(τ) dτ

)
is the time-ordered exponential.

Proof. We can write

ei(H̃L(q)+H̃M (q)+H̃R(q))t = ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))tei(H̃L(q)+H̃R(q))t.

By differentiating we notice that ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))t is the solution to{
iU ′(t) = U(t)ei(H̃L(q)+H̃R(q))tHMe−i(H̃L(q)+H̃R(q))t

U(0) = id .

Alternatively, the solution to the equation above can be written

ei(H̃L(q)+H̃M (q)+H̃R(q))te−i(H̃L(q)+H̃R(q))t = T exp
(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)∗
.

Using a Lieb-Robinson bound and Corollary 3.3.5, there is a family of operators H̃
(ℓ)
M (t) such

that for all t ∈ R, H̃(ℓ)
M (t) ∈ L (Hj−ℓ:j+ℓ) and∥∥∥ei(H̃L(q)+H̃R(q))tHMe−i(H̃L(q)+H̃R(q))t − id1:j−ℓ−1⊗H̃(ℓ)

M (t)⊗ idj+ℓ+1:d

∥∥∥
≤ ∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

It remains to bound the difference between T exp
( ∫ t

0
ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ

)
and T exp

( ∫ t

0
id1:j−ℓ−1⊗H̃(ℓ)

M (τ)⊗ idj+ℓ+1:d dτ
)
. Recall that for a family of operators A(t), the

time-ordered exponential is defined by

T exp
(∫ t

0

A(τ) dτ
)
= lim

N→∞
eA(tN )∆teA(tN−1)∆t · · · eA(t1)∆t, tk = k∆t, ∆t =

t

N
.

By a Duhamel formula, the difference of the time-ordered exponentials can be bounded by∥∥∥T exp
(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)

− T exp
(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∥∥∥
≤ t∥h∥ℓ2d exp(−a(ℓ/3− v|t|)).

This finishes the proof of the lemma.
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We have now all the ingredients to prove Hastings area law 3.3.6.

Proof of Theorem 3.3.6. Let OL and OR be the operators defined in Lemma 3.3.13. Then we
have

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | = |Ψ(d)
0 ⟩⟨Ψ(d)

0 |OLOR+
1

α
O(∥H̃L(q)−HL(q)∥+∥H̃R(q)−HR(q)∥+∥HLΨ

(d)
0 ∥+∥HRΨ

(d)
0 ∥).

Thus with Lemma 3.3.10 and Lemma 3.3.11, we obtain

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | = |Ψ(d)
0 ⟩⟨Ψ(d)

0 |OLOR +
1

α
O
(
γJe−

1
2
γ2q + ∥h∥ℓ2dq1/2e−aℓ/3eqa

2v2
)
.

Using that OL and OR are bounded operators by 1, in combination with Lemma 3.3.12, we get

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | =
1√
2πq

∫
R
ei(H̃L(q)+H̃M (q)+H̃R(q))te

− t2

2qOLOR dt+O
(∥h∥ℓ2d

α
q1/2e−aℓ/3eqa

2v2 +
γJ

α
e−

1
2
γ2q

)
=

1√
2πq

∫
R
T exp

(∫ t

0

ei(H̃L(q)+H̃R(q))τHMe−i(H̃L(q)+H̃R(q))τ dτ
)∗

e
− t2

2q ei(H̃L(q)+H̃R(q))tOLOR dt

+O
(∥h∥ℓ2d

α
q1/2e−aℓ/3eqa

2v2 +
γJ

α
e−

1
2
γ2q

)
,

where we have used Lemma 3.3.14. By Lemma 3.3.13, we thus have

|Ψ(d)
0 ⟩⟨Ψ(d)

0 | =
1√
2πq

∫
R
T exp

(∫ t

0

id1:j−ℓ−1⊗H̃(ℓ)
M (τ)⊗ idj+ℓ+1:d dτ

)∗
e
− t2

2qOLOR dt

+O
(
αq1/2 +

∥h∥ℓ2d
α

q1/2e−aℓ/3eqa
2v2 +

γJ

α
e−

1
2
γ2q

)
.

All it remains to do is to set the parameters α and q to prove Theorem 3.3.6. Taking q = q̃ℓ

such that
(
γ2

2
+ av2

)
q̃ < a

3
and α < e−

1
2
γ2q̃ℓ give (3.3.6).

3.4 Area laws via AGSP
The main goal of this section is to prove the following Lemma, which is central in the proof of
the area law using AGSP.

Lemma 3.4.1 ([AKL16, Theorem 2.3]). For J ⊂ {1, . . . , d−1}, let EJ
0 and E

(d)
0 be respectively

the lowest eigenvalue of HJ =
∑

j∈J Wj and H(d). Let EJ
0 be the lowest eigenvalue of HJ . Let

Π[EJ
0 +E,EJ

0 +E′] be the spectral projector of HJ associated to the eigenvalues in [EJ
0 +E,EJ

0 +E ′]

(E < E ′). Let P
[E

(d)
0 ,E

(d)
0 +ε]

be the spectral projector of H(d) associated to the eigenvalues in

[E
(d)
0 , E

(d)
0 + ε]. Then there are constants C and α independent of E,E ′, ε,J such that we have

∥Π
[EJ

0 +E,EJ
0 +E′]P[E

(d)
0 ,E

(d)
0 +ε]
∥ ≤ C exp

(
−α

(
E − ε+ EJ

0 − E
(d)
0

))
. (3.4.1)
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The proof of this estimate relies on the insertion of semigroups etHJ and etH
(d) , with t > 0

specified later, between the projectors

∥Π
[EJ

0 +E,EJ
0 +E′]P[E

(d)
0 ,E

(d)
0 +ε]
∥ = ∥Π

[EJ
0 +E,EJ

0 +E′]e
−tHJ etHJ e−tH(d)

etH
(d)

P
[E

(d)
0 ,E

(d)
0 +ε]
∥

≤ ∥Π
[EJ

0 +E,EJ
0 +E′]e

−tHJ ∥∥etHJ e−tH(d)∥∥etH(d)

P
[E

(d)
0 ,E

(d)
0 +ε]
∥

≤ exp
(
−t(E + EJ

0 )
)
∥etHJ e−tH(d)∥ exp

(
t(E

(d)
0 + ε)

)
. (3.4.2)

It remains to bound ∥etHJ e−tH(d)∥. This determines the maximal value t that can be taken.
Let J = {j|∃k ∈ J , |j − k| ≤ 1. This is the set of indices which represents the support

of the Hamiltonian HJ . Let J c
= {1, . . . , d} \ J , ∂J = J \ J . Let HJ c =

∑
j∈J c Wj and

H∂J =
∑

j∈∂J Wj. Then H(d) = HJ +H∂J +HJ c where HJ and HJ c commute, but not HJ

and H∂J , or H∂J and HJ c . Hence it is not possible to write etHJ e−tH(d)
= e−t(H∂J+HJ c ). There

is however a similar but more involved relation that holds.

Lemma 3.4.2 (Dyson expansion [AKL16, Lemma 6.3]). Let X, Y two operators and t ≥ 0.
Then we have

e−t(X+Y ) = e−tX

∞∑
j=0

Gj(t),

where

Gj(t) = (−1)j
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sj−1

0

dsjY (s1) · · ·Y (sj), (3.4.3)

with Y (s) = esXY e−sX .

With this lemma, we can now prove Lemma 3.4.1.

Proof of Lemma 3.4.1. We are going to apply the Dyson expansion lemma with X = HJ +HJ c

and Y = H∂J . Let HJ∪J c = HJ +HJ c . We first need to bound ∥esHJ∪J cH∂J e
−sHJ∪J c∥. For

that, we will use the Hadamard expansion [Mil72, Lemma 5.3, pp. 160]

esHJ∪J cH∂J e
−sHJ∪J c = H∂J + s

[
HJ∪J c , H∂J

]
+

s2

2!

[
HJ∪J c ,

[
HJ∪J c , H∂J

]]
+ . . .

Because of the nearest neighbour interaction structure of the Hamiltonian, most of the terms
in the iterated commutator vanish. Let k ∈ ∂J . By linearity it is enough to consider the iter-
ated commutator of

[
HJ∪J c , . . .

[
HJ∪J c ,Wk

]
. . .

]
. Denote Kn =

[
HJ∪J c , . . .

[
HJ∪J c ,︸ ︷︷ ︸

n times

Wk

]
. . .

]
.

Then the only non vanishing terms in the iterated commutator are terms of the form
∏n

j=1Wij

where {i1, . . . , in} is -up to reordering- a list of at most n consecutive integers including k.
Hence the number of non vanishing terms when expanding the iterated commutator is bounded
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by 6nn! because [A,B] = AB − BA and Wj has common support with Wj−1,Wj,Wj+1. Thus
we have

∥Kn∥ ≤ 6n∥W∥n+1n!,

hence

∥esHJ∪J cH∂J e
−sHJ∪J c∥ ≤

∞∑
n=0

|∂J |6n∥W∥n+1sn ≤ |∂J |∥W∥
1− 6s∥W∥ , (3.4.4)

for 0 ≤ s < 1
6∥W∥ .

We can now bound ∥Gj(t)∥ in (3.4.3) with X = HJ∪J c and Y = H∂J . We have for
0 ≤ t < 1

6∥W∥

∥Gj(t)∥ =
∥∥∥∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sj−1

0

dsjH∂J (s1) · · ·H∂J (sj)
∥∥∥

≤
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sj−1

0

dsj ∥H∂J (s1)∥ . . . ∥H∂J (sj)∥

≤ (|∂J |∥W∥t)j
j!(1− 6∥W∥t)j .

Thus we have ∥∥∥ ∞∑
j=0

Gj(t)
∥∥∥ ≤ ∞∑

j=0

(|∂J |∥W∥t)j
j!(1− 6∥W∥t)j = exp

( |∂J |∥W∥
1− 6∥W∥tt

)
. (3.4.5)

For any 0 < t < 1
6∥W∥ , we have

∥∥∥etHJ e−tH(d)
∥∥∥ ≤ ∥∥∥etHJ e−tHJ∪J c

∞∑
j=0

Gj(t)
∥∥∥

≤ ∥e−tHJ c∥
∥∥∥ ∞∑

j=0

Gj(t)
∥∥∥

≤ exp

( |∂J |∥W∥
1− 6∥W∥tt

)
,

where we have used that HJ and HJ c commute and HJ c ≥ 0.
Inserting the last estimate in Eq. (3.4.2) finishes the proof of the lemma.
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