Tensor trains for high-dimensional problems

Mi-Song Dupuy

March 30, 2023

Contents

1 Tensor trains 7
1.1 Singular value decomposition and generalisations for tensors 7
1.1.1 Tensors and reshapes 7
1.1.2 The low-rank approximation for matrices 8
1.1.3 Generalisations of the SVD for tensors 10
1.2 Tensor train decomposition 11
1.2.1 Definition 11
1.2.2 The hierarchical SVD 14
1.2.3 Normalisation and gauge freedom 15
1.3 Approximation by tensor trains 21
1.4 Manifold of tensor trains 22
2 DMRG 27
2.1 Tensor train operators 27
2.1.1 Definition and graphical representation 27
2.1.2 Algebraic properties 28
2.2 The DMRG algorithm 29
2.2.1 General algorithm 30
2.2.2 Implementation details 32
2.3 Convergence of DMRG 32
2.3.1 Local convergence of DMRG 32
2.3.2 Half-sweep convergence 32
2.4 Optimisation on the TT-manifold 32

Introduction

These notes are a short introduction to the tensor train decomposition, with a particular focus on solving linear equations within this format. The tensor train decomposition [OT09] is presented as a generalisation of the singular value decomposition for matrices, which is central in the characterisation of the low-rank approximation problem. Approximation results for the tensor train format as well as the tensor train manifold are discussed.

The second part deals with the numerical resolution of linear systems or eigenvalue problems. The historical algorithm is an alternating scheme, known as the density matrix renormalisation group (DMRG) [Whi92, HRS12a], using the variational formulation of symmetric linear problems. Another way to solve linear problems is to adapt the classical iterative methods to the tensor train format [KU16]. Both approaches are presented and discussed in the present notes.

These notes are inspired by the following texts on the tensor train decomposition [Hac12, Hac14, Sch11, BSU16, UV20].

Chapter 1

Tensor trains

1.1 Singular value decomposition and generalisations for tensors

This chapter is devoted to the tensor train decomposition, as a generalisation of the singular value decomposition (SVD) for high-dimensional tensors. The SVD arises in the low-rank approximation of matrices, as such, it is natural to look for generalisation of the SVD for high-dimensional tensors. As it will be mentioned, the historical tensor formats, i.e. the CP decomposition and the Tucker decomposition suffer from drawbacks that the tensor train format does not have.

1.1.1 Tensors and reshapes

A tensor C of order $L \in \mathbb{N}$ is a multidimensional array $C_{i_{1} \ldots i_{L}} \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$.
A convenient way to represent tensor and product of tensors is the graphical representation. Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ be a tensor. The graphical representation of C is given by

Figure 1.1: Graphical representation of C.

Each vertex represents a tensor and each edge an index of the tensor.

(a) Vector $v_{i_{2}}$.

(b) Matrix $A_{i_{1}}^{i_{2}}$.

(c) Matrix-vector product
$(A v)_{i_{1}}=\sum_{i_{2}} A_{i_{1}}^{i_{1}} v_{i_{2}}$.

$$
(A v)_{i_{1}}=\sum_{i_{2}} A_{i_{1}}^{i_{2}} v_{i_{2}} .
$$

Figure 1.2: Contraction of tensors. Every pair of connected edges is a summation over the shared index.

Definition 1.1.1 (Reshape of a tensor). Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ be a tensor. Let $\left(j_{1}, \ldots, j_{\ell}, k_{1}, \ldots, k_{n}\right)$ be a permutation of $\{1, \ldots, L\}$. We say that the matrix $C_{i_{j_{1}} \ldots i_{j_{\ell}}}^{i_{k_{1}} \cdots i_{k_{n}}} \in \mathbb{R}^{n_{j_{1}} \cdots n_{j_{\ell}} \times n_{k_{1}} \cdots n_{k_{n}}}$ is a reshape of C.

The reshapes $C_{i_{1} \ldots i_{\ell}}^{i_{++1} \ldots i_{L}}$ will be of particular interest for tensor trains.

1.1.2 The low-rank approximation for matrices

Theorem 1.1.2. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. There exist orthogonal matrices $U \in \mathbb{R}^{m \times r_{A}}$ and $V \in \mathbb{R}^{n \times r_{A}}$, and a diagonal matrix $\Sigma=\operatorname{Diag}\left(s_{1}, \ldots, s_{r_{A}}\right)$ with $s_{1} \geq \cdots \geq s_{r_{A}}>0$ such that $A=U \Sigma V^{T}$. The triplet of matrices $\left(U, \Sigma, V^{T}\right)$ satisfying these properties is called a singular value decomposition (SVD) of A.

An important property of the singular value decomposition is the following.
Theorem 1.1.3 (Best rank r approximation of a matrix [Sch08]). Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $\left(U, \Sigma, V^{T}\right)$ an $S V D$ of A. The best rank-r of A in the Frobenius norm is given by

$$
A_{r}=U_{r} \Sigma_{r} V_{r}^{T}=\sum_{k=1}^{r} s_{k} u_{k} v_{k}^{T},
$$

where $U_{r} \in \mathbb{R}^{m \times r}, \Sigma_{r} \in \mathbb{R}^{r \times r}$ and $V_{r} \in \mathbb{R}^{n \times r}$ are the respective truncations of U, Σ and V. The error is given by

$$
\begin{equation*}
\left\|A-A_{r}\right\|_{F}=\left(\sum_{k \geq r+1} s_{k}^{2}\right)^{1 / 2} \tag{1.1.1}
\end{equation*}
$$

The best approximation is unique if $s_{r}>s_{r+1}$.
Another way to phrase the best rank r approximation of a matrix is to take the subspace point of view. A matrix $A \in \mathbb{R}^{m \times n}$ can be viewed as a vector of the product space $\mathbb{R}^{m} \otimes \mathbb{R}^{n}$ which is isometrically isomorphic to $\mathbb{R}^{m n}$. The subspace problem is phrased

1.1. SINGULAR VALUE DECOMPOSITION AND GENERALISATIONS FOR TENSORS9

as follows: find subspaces $\mathcal{U} \subset \mathbb{R}^{m}$ and $\mathcal{V} \subset \mathbb{R}^{n}$ both of dimension r such that it minimises the distance

$$
\begin{equation*}
\operatorname{dist}(A, \mathcal{U} \otimes \mathcal{V})=\left\|A-\Pi_{\mathcal{U} \otimes \mathcal{V}} A\right\|=\min _{\substack{\tilde{\mathcal{U}} \subset \mathbb{R}^{m}, \operatorname{dim} \tilde{\mathcal{U}}=r \\ \tilde{\mathcal{V}} \subset \mathbb{R}^{n}, \operatorname{dim} \tilde{\mathcal{V}}=r}}\left\|A-\Pi_{\tilde{\mathcal{U}} \otimes \tilde{\mathcal{V}}} A\right\|, \tag{1.1.2}
\end{equation*}
$$

where $\Pi_{\mathcal{W}}$ is the orthogonal projection onto the subspace $\mathcal{W} \subset \mathbb{R}^{m n}$. The SVD of the matrix $\left(A_{i}^{j}\right)$ is also a representation of the vector $\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ in the orthonormal basis $\left(u_{i} \otimes v_{j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$:

$$
\begin{equation*}
A=\sum_{k=1}^{r_{A}} s_{k} u_{k} \otimes v_{k} . \tag{1.1.3}
\end{equation*}
$$

Proposition 1.1.4. Let $A \in \mathbb{R}^{m \times n},\left(U, \Sigma, V^{T}\right)$ its $S V D$ and $r \in \mathbb{N}$. Denote $\left(u_{1}, \ldots, u_{r_{A}}\right)$ and $\left(v_{1}, \ldots, v_{r_{A}}\right)$ the respective columns of U and V. A solution to the subspace minimisation problem (1.1.2) is given by

$$
\begin{equation*}
\mathcal{U}=\operatorname{Span}\left(u_{1}, \ldots, u_{r}\right), \quad \mathcal{V}=\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right) \tag{1.1.4}
\end{equation*}
$$

The solution is unique if $s_{r}>s_{r+1}$.
Proof. Let $\widetilde{\mathcal{U}}$ and $\widetilde{\mathcal{V}}$ be respectively subspaces of \mathbb{R}^{m} and \mathbb{R}^{n} of dimension r. Let $\left(\widetilde{u}_{i}\right)_{1 \leq i \leq r}$ and $\left(\widetilde{v}_{i}\right)_{1 \leq i \leq r}$ be ONB of respectively $\widetilde{\mathcal{U}}$ and $\widetilde{\mathcal{V}}$. The minimisation problem (1.1.2) can be rewritten as

$$
\min _{\substack{\tilde{\mathcal{U}} \subset \mathbb{R}^{m}, \operatorname{dim} \tilde{\mathcal{U}}=r \\ \tilde{\mathcal{V}} \subset \mathbb{R}^{n}, \operatorname{dim} \tilde{\mathcal{V}}=r}}\left\|A-\Pi_{\tilde{\mathcal{U}} \otimes \tilde{\mathcal{V}}} A\right\|=\min _{\substack{\tilde{\mathcal{U}} \subset \mathbb{R}^{m}, \operatorname{dim} \tilde{\mathcal{V}}=r \\ \tilde{\mathcal{R}} \subset \mathbb{R}^{n}, \operatorname{dim} \tilde{\mathcal{V}}=r}}\left\|A-P_{\tilde{\mathcal{U}}} A P_{\tilde{\mathcal{V}}}\right\|_{F}^{2},
$$

where $P_{\tilde{\mathcal{U}}}\left(\right.$ resp. $\left.P_{\tilde{\mathcal{V}}}\right)$ is the orthogonal projection onto $\widetilde{\mathcal{U}}$ (resp. $\widetilde{\mathcal{V}}$).
Let $\widetilde{\mathcal{U}}$ and $\widetilde{\mathcal{V}}$ be respectively subspaces of \mathbb{R}^{m} and \mathbb{R}^{n} of dimension r. Let $\left(\widetilde{u}_{i}\right)_{1 \leq i \leq r}$ and $\left(\widetilde{v}_{i}\right)_{1 \leq i \leq r}$ be ONB of respectively $\widetilde{\mathcal{U}}$ and $\widetilde{\mathcal{V}}$. Then we have

$$
\begin{aligned}
\left\|A-P_{\widetilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right\|_{F}^{2} & =\operatorname{Tr}\left(\left(A-P_{\tilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right)^{T}\left(A-P_{\tilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right)\right) \\
& =\operatorname{Tr}\left(A^{T} A-P_{\widetilde{\mathcal{V}}} A^{T} P_{\widetilde{\mathcal{U}}} A-A^{T} P_{\widetilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}+P_{\widetilde{\mathcal{V}}} A^{T} P_{\widetilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right) \\
& =\operatorname{Tr}\left(A^{T} A\right)-\operatorname{Tr}\left(P_{\widetilde{\mathcal{V}}} A^{T} P_{\widetilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right),
\end{aligned}
$$

where we have used that since $P_{\tilde{\mathcal{V}}}$ is an orthogonal projection, we have $\operatorname{Tr}\left(P_{\tilde{\mathcal{V}}} A^{T} P_{\tilde{\mathcal{U}}} A\right)=$ $\operatorname{Tr}\left(A^{T} P_{\tilde{\mathcal{U}}} A P_{\tilde{\mathcal{V}}}\right)=\operatorname{Tr}\left(P_{\tilde{\mathcal{V}}} A^{T} P_{\tilde{\mathcal{U}}} A P_{\tilde{\mathcal{V}}}\right)$. We realise that

$$
\operatorname{Tr}\left(P_{\widetilde{\mathcal{V}}} A^{T} P_{\widetilde{\mathcal{U}}} A P_{\widetilde{\mathcal{V}}}\right)=\sum_{1 \leq i, j \leq r}\left\langle\widetilde{u}_{i}, A \widetilde{v}_{j}\right\rangle^{2}
$$

Solving the minimisation problem (1.1.2) is equivalent to maximising $\sum_{1 \leq i, j \leq r}\left(\left\langle\widetilde{u}_{i}, A \widetilde{v}_{j}\right\rangle\right)^{2}$ where $\left(\widetilde{u}_{i}\right)_{1 \leq i \leq r}$ and $\left(\widetilde{v}_{i}\right)_{1 \leq i \leq r}$ are orthonormal families. Using the SVD of A, the previous quantity is maximised for $\widetilde{\mathcal{U}}=\operatorname{Span}\left(u_{1}, \ldots, u_{r}\right)$ and $\widetilde{\mathcal{V}}=\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$.

1.1.3 Generalisations of the SVD for tensors

For higher-order tensors, different schematic generalisations of the SVD are possible. With the previous discussion, there are two natural options that emerge:

- write the tensor as a sum of rank- 1 tensors:

$$
C=\sum_{k=1}^{r} u_{k}^{(1)} \otimes \cdots \otimes u_{k}^{(L)},
$$

where $u_{k}^{(j)} \in \mathbb{R}^{n_{j}}$. This is the canonical polyadic decomposition (CP decomposition);

- consider the subspace minimisation problem:

$$
\operatorname{dist}\left(C, \mathcal{U}_{1} \otimes \mathcal{U}_{2} \otimes \cdots \otimes \mathcal{U}_{L}\right)=\min _{\tilde{\mathcal{U}}_{1} \subset \mathbb{R}^{n_{1}}, \operatorname{dim} \tilde{\mathcal{U}}_{1}=r_{1}, \ldots, \tilde{\mathcal{U}}_{L} \subset \mathbb{R}^{n} L, \operatorname{dim} \tilde{\mathcal{U}}_{L}=r_{L}}\left\|C-\Pi_{\tilde{\mathcal{U}}_{1} \otimes \cdots \otimes \tilde{\mathcal{U}}_{L}} C\right\|,
$$

where $\operatorname{dim} \mathcal{U}_{k}=r_{k}$ for all $1 \leq k \leq L$. This yields the Tucker decomposition.
The canonical decomposition looks the most appealing as it is the most sparse way to represent a tensor. It has however one major drawback, being that the best rank r approximation (in the sense of the CP decomposition) is ill-posed! [DSL08] Consider noncolinear vectors $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{n}$ and the tensor

$$
C=b \otimes a \otimes a+a \otimes b \otimes a+a \otimes a \otimes b .
$$

which is a tensor of canonical rank 3 . It can however be approximated as well as we wish by a tensor of canonical rank 2 : let $\varepsilon>0$, then we see that

$$
\begin{equation*}
C-\left(\frac{1}{\varepsilon}(a+\varepsilon b) \otimes(a+\varepsilon b) \otimes(a+\varepsilon b)-\frac{1}{\varepsilon} a \otimes a \otimes a\right)=\mathcal{O}(\varepsilon) \tag{1.1.5}
\end{equation*}
$$

Contrary to matrices, the set of tensors of canonical rank less than r is not closed.
Regarding the Tucker decomposition, let $C \in \mathcal{U}_{1} \otimes \cdots \otimes \mathcal{U}_{L}$. Then there is a core tensor $S \in \mathbb{R}^{r_{1} \times \cdots \times r_{L}}$ and matrices $\left(U_{k}\right)_{1 \leq k \leq L} \in \bigotimes_{k=1}^{L} \mathbb{R}^{n_{k} \times r_{k}}$ such that

$$
\forall 1 \leq i_{k} \leq n_{k}, C_{i_{1} \ldots i_{L}}=\sum_{j_{1}=1}^{r_{1}} \cdots \sum_{j_{L}=1}^{r_{L}} S_{j_{1} \ldots j_{L}}\left(U_{1}\right)_{i_{1}}^{j_{1}} \cdots\left(U_{L}\right)_{i_{L}}^{j_{L}} .
$$

The storage cost of the tensor C is still exponential in the order L of the tensor (except if some r_{k} are equal to 1). As such it is a useful decomposition only for low order tensors. In the following, we will focus on the efficient representation of tensors of order up to a hundred, for which the Tucker decomposition is not suited.

Figure 1.3: Tucker and tensor train decompositions

1.2 Tensor train decomposition

1.2.1 Definition

The tensor train (TT) decomposition [OT09], also called matrix product state [KSZ91] in the physics litterature is the simplest instance of a tensor network. The TT decomposition is related to the density-matrix renormalisation group (DMRG) [Whi92] pioneered by White for the computation of properties of one-dimensional statistical physics systems. The connection between DMRG and TT has been realised later [OR95, DMNS98].

Definition 1.2.1 ([KSZ91, OT09]). Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ be a tensor. We say that $\left(A_{1}, \ldots, A_{L}\right)$ is a tensor train decomposition of C if we have for all $1 \leq i_{k} \leq n_{k}$

$$
\begin{align*}
C_{i_{1} \ldots i_{L}} & =A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{L}\left[i_{L}\right] \tag{1.2.1}\\
& =\sum_{\alpha_{1}=1}^{r_{1}} \sum_{\alpha_{2}=1}^{r_{2}} \cdots \sum_{\alpha_{L-1}=1}^{r_{L-1}} A_{1}\left[i_{1}\right]_{\alpha_{1}} A_{2}\left[i_{2}\right]_{\alpha_{2}}^{\alpha_{1}} \cdots A_{L}\left[i_{L}\right]^{\alpha_{L-1}}, \tag{1.2.2}
\end{align*}
$$

where for each $1 \leq i_{k} \leq n_{k}, A_{k}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}}\left(r_{0}=r_{L}=1\right)$. The tensor A_{k} are called the TT cores and the sizes of the TT cores are the TT ranks of C.

Such a representation has a storage cost of $\sum_{k=1}^{L} n_{k} r_{k-1} r_{k}$. Provided that the TT ranks do not increase exponentially with the order L of the tensor, the TT decomposition is a sparse representation of the tensor C. As it will be highlighted later, an exact TT representation of any tensor C can be derived using the hierarchical SVD. Generically, the TT ranks of the tensor will be exponential in L, however, good approximations for problems can be achieved for problems with some notion of sparsity [Has07, DDGS16].

Example 1.2.2. - a tensor product $C_{i_{1} \ldots i_{L}}=u_{i_{1}}^{(1)} \cdots u_{i_{L}}^{(L)}$ is a TT of TT rank 1, as the cores are $\left(u_{i_{k}}^{(k)}\right)_{1 \leq k \leq L, 1 \leq i_{k} \leq n_{k}}$.

Figure 1.4: Schematic representation of the TT decomposition

- the unnormalised Bell state $B \in \bigotimes_{1}^{2 L} \mathbb{R}^{2}$

$$
\begin{aligned}
B_{i_{1} \ldots i_{2 L}}=\left(\delta_{1, i_{1}} \delta_{2, i_{2}}+\delta_{2, i_{1}} \delta_{1, i_{2}}\right)\left(\delta_{1, i_{3}} \delta_{2, i_{4}}+\delta_{2, i_{3}} \delta_{1, i_{4}}\right) & \ldots \\
& \left(\delta_{1, i_{2 L-1}} \delta_{2, i_{2 L}}+\delta_{2, i_{2 L-1}} \delta_{1, i_{2 L}}\right),
\end{aligned}
$$

is a TT of rank 2: let $\left(B_{k}\right)_{1 \leq k \leq 2 L}$ be defined by

$$
B_{2 k-1}\left[i_{2 k-1}\right]=\left[\begin{array}{ll}
\delta_{1 i_{2 k-1}} & \delta_{2 i_{2 k-1}}
\end{array}\right], \quad B_{2 k}\left[i_{2 k}\right]=\left[\begin{array}{l}
\delta_{2 i_{2 k}} \\
\delta_{1 i_{2 k}}
\end{array}\right], \quad k=1, \ldots, L .
$$

By a direct calculation, we can check that $B_{i_{1} \ldots i_{2 L}}=B_{1}\left[i_{1}\right] \cdots B_{2 L}\left[i_{L}\right]$.

- for $L=2$, the following reordering of the indices of the Bell state $\widetilde{B} \in \bigotimes_{1}^{4} \mathbb{R}^{2}$

$$
\widetilde{B}_{i_{1} \ldots i_{4}}=\left(\delta_{1, i_{1}} \delta_{2, i_{3}}+\delta_{2, i_{1}} \delta_{1, i_{3}}\right)\left(\delta_{1, i_{2}} \delta_{2, i_{4}}+\delta_{2, i_{3}} \delta_{1, i_{4}}\right)
$$

has a TT decomposition of rank 4:

i_{k}	\widetilde{B}_{1}	\widetilde{B}_{2}	\widetilde{B}_{3}	\widetilde{B}_{4}
1	$\left[\begin{array}{ll}1 & 0\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
2	$\left[\begin{array}{ll}0 & 1\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

This elementary example highlights the importance of the ordering of the indices of the tensor for an efficient TT representation.

Remark 1.2.3. The reordered Bell state example $\widetilde{B} \in \bigotimes_{1}^{2 L} \mathbb{R}^{2}$

$$
\widetilde{B}_{i_{1} \ldots i_{2 L}}=\prod_{k=1}^{L}\left(\delta_{1, i_{k}} \delta_{2, i_{k+L}}+\delta_{2, i_{k}} \delta_{1, i_{k+L}}\right)
$$

has a TT decomposition of rank 2^{L}. The optimality of the ranks is proved by the characterisation of the TT ranks stated in Theorem 1.2.7.

It is clear that there is no uniqueness of the TT decomposition. Indeed for a tensor $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ if $\left(A_{1}, \ldots, A_{L}\right)$ is a tensor train decomposition, then for any invertible matrices $\left(G_{k}\right)_{1 \leq k \leq L-1} \in \bigotimes_{k=1}^{L-1} \mathrm{GL}_{r_{k}}(\mathbb{R})$, the TT cores $\left(\widetilde{A}_{1}, \ldots, \widetilde{A}_{L}\right)$ defined by

$$
\left\{\begin{array}{l}
\widetilde{A}_{1}\left[i_{1}\right]=A_{1}\left[i_{1}\right] G_{1}, i_{1}=1, \ldots, n_{1}, \quad \widetilde{A}_{L}\left[i_{L}\right]=G_{L-1}^{-1} A_{L}\left[i_{L}\right], i_{L}=1, \ldots, n_{L} \\
\widetilde{A}_{k}\left[i_{k}\right]=G_{k-1}^{-1} A_{k}\left[i_{k}\right] G_{k}, i_{k}=1, \ldots, n_{k}, k=2, \ldots, L-1,
\end{array}\right.
$$

is an equivalent TT representation.
As we are going to see later on, it is possible to partially lift this gauge freedom by imposing additional properties on the TT cores $\left(A_{k}\right)$.

Proposition 1.2.4 (Algebraic properties of TT). Let $\left(A_{1}, \ldots, A_{L}\right)$ and $\left(\widetilde{A}_{1}, \ldots, \widetilde{A}_{L}\right)$ be the respective $T T$ decompositions of the tensors $C, \widetilde{C} \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$. Then

$$
\begin{array}{r}
B_{1}\left[i_{1}\right]=\left(A_{1}\left[i_{1}\right] \widetilde{A}_{1}\left[i_{1}\right]\right), \quad B_{L}\left[i_{L}\right]=\left[\begin{array}{l}
A_{L}\left[i_{L}\right] \\
\widetilde{A}_{L}\left[i_{L}\right]
\end{array}\right] \tag{1.2.3}\\
B_{k}\left[i_{k}\right]=\left[\begin{array}{cc}
A_{k}\left[i_{k}\right] & 0 \\
0 & \widetilde{A}_{k}\left[i_{k}\right]
\end{array}\right], k=2, \ldots, L-1
\end{array}
$$

is a $T T$ decomposition of the sum $C+\widetilde{C}$.

The proof consists in expanding the TT decomposition $\left(B_{1}, \ldots, B_{L}\right)$. The TT decomposition (1.2.3) is in general not minimal and can be compressed as explained in Section 1.3.

Remark 1.2.5. Since a tensor product $u^{(1)} \otimes \cdots \otimes u^{(L)}$ is a TT of rank 1, we deduce that a CP decomposition of rank r has at most a TT representation of rank r. The $T T$ decomposition is a generalisation of the CP format, with advantageous algebraic and topologic properties.

1.2.2 The hierarchical SVD

The hierarchical SVD (HSVD) is an algorithm [Vid03, OT09] to obtain a tensor train representation of any tensor. In the HSVD, we apply successive SVD to $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$:

$$
\begin{array}{rlr}
C_{i_{1} \ldots i_{L}} & =\left(C_{i_{1}}^{i_{2} \ldots i_{L}}\right) & \text { (reshape of } \left.C \text { to } n_{1} \times n_{2} \cdots n_{L}\right) \\
& =\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(\Sigma_{1} V_{1}\right)_{\alpha_{1} \ldots i_{L}}^{i_{2}} & \text { (SVD) } \tag{SVD}\\
& =\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(\Sigma_{1} V_{1}\right)_{\alpha_{3} \ldots i_{L}}^{i_{3}} & \text { (reshape of } \left.\Sigma_{1} V_{1}\right) \\
& =\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}}\left(\Sigma_{2} V_{2}\right)_{\alpha_{2} \ldots i_{L}}^{i_{3}} & \left(\text { SVD of } \Sigma_{1} V_{1}\right) \\
& =\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}}\left(\Sigma_{2} V_{2}\right)_{\alpha_{4} \ldots i_{2}}^{i_{4}} & \text { (reshape of } \left.\Sigma_{2} V_{2}\right),
\end{array}
$$

we repeat the process until we get

$$
C_{i_{1} \ldots i_{L}}=\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}} \cdots\left(U_{L-1}\right)_{\alpha_{L-2} i_{L-1}}^{\alpha_{L-1}}\left(\Sigma_{L-1} V_{L-1}\right)_{\alpha_{L-1}}^{i_{L}} .
$$

The identification with the TT decomposition is clear, one simply needs to be careful with the switch in the role played by the virtual indices:

$$
\begin{aligned}
C_{i_{1} \ldots i_{L}} & =\left(U_{1}\right)_{i_{1}}^{\alpha_{1}} \\
& \left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}} \\
\cdots & \cdots
\end{aligned}\left(U_{L-1}\right)_{\alpha_{L-2}}^{\alpha_{L-1}}{ }^{\alpha_{L-1}}\left(\Sigma_{L-1} V_{L-1}\right)_{\alpha_{L-1}}^{i_{L}}
$$

There are a few immediate remarks:
(i). it is possible to start at the end, i.e. by first reshaping C into the matrix $C_{i_{1} \ldots i_{L-1}}^{i_{L}} \in$ $\mathbb{R}^{n_{1} \cdots n_{L-1} \times n_{L}}$, perform its SVD and carry on. Another TT representation is obtained this way;
(ii). from the HSVD algorithm, we guess that the singular values Σ_{k} are related to the singular values of the reshapes $C_{i_{1} \ldots i_{k}}^{i_{k+1} \cdots i_{L}} \in \mathbb{R}^{n_{1} \cdots n_{k} \times n_{k+1} \cdots n_{L}}$ and that they play a key role in the best approximation by a TT at fixed TT ranks. This is indeed the case and it will be treated in Section 1.3.

This algorithm is central in the theory of TT and more generally in the approximation theory by tensor networks. It is somewhat clear that such an algorithm extends to the decomposition into a tree tensor network. Indeed, in the HSVD algorithm, we simply partition $\{1, \ldots, L\}$ into the sets $(\{1\},\{2, \ldots, L\})$, then $(\{1\},\{2\},\{3, \ldots, L\})$, and so on so forth. For trees, we choose different partition choices that does not have to reduce to a singleton right away. For tensor networks with loops, there is no equivalent of the HSVD for the construction of a tensor network directly from the tensor. This makes the analysis of such networks much more difficult.

1.2.3 Normalisation and gauge freedom

Definition 1.2.6. We say that a $T T$ decomposition $\left(A_{1}, \ldots, A_{L}\right)$ is

- left-orthogonal if for all $1 \leq k \leq L-1$ we have

$$
\begin{equation*}
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right]^{*} A_{k}\left[i_{k}\right]=\operatorname{id}_{r_{k}} \tag{1.2.4}
\end{equation*}
$$

- right-orthogonal if for all $2 \leq k \leq L$ we have

$$
\begin{equation*}
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right] A_{k}\left[i_{k}\right]^{*}=\operatorname{id}_{r_{k-1}} \tag{1.2.5}
\end{equation*}
$$

From the HSVD algorithm, we see that we obtain a left-orthogonal TT decomposition of the tensor C. By starting from the end, we would get a right-orthogonal TT representation of C.

Such a normalisation turns out to be convenient for the computation of the norm a tensor. Suppose that $\left(A_{1}, \ldots, A_{L}\right)$ is a left-orthogonal TT decomposition. The norm of the corresponding tensor C remarkably simplifies

$$
\begin{aligned}
\|C\|_{F}^{2} & =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}}\left(A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right]\right)^{2} \\
& =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} A_{L}\left[i_{L}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right] \\
& =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} A_{L}\left[i_{L}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right] \\
& =\sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{L}=1}^{n_{L}} A_{L}\left[i_{L}\right]^{T} \cdots\left(\sum_{i_{1}=1}^{n_{1}} A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right]\right) \cdots A_{L}\left[i_{L}\right] \\
& =\sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{L}=1}^{n_{L}} A_{L}\left[i_{L}\right]^{T} \cdots A_{2}\left[i_{2}\right]^{T} A_{2}\left[i_{2}\right] \cdots A_{L}\left[i_{L}\right],
\end{aligned}
$$

where the left-orthogonality of A_{1} has been used. Hence by iterating this argument, the norm of C is simply the norm of the last TT core A_{L}.

Another instance where the choice of the normalisation is crucial is in solving eigenvalue problems in DMRG (see Chapter 2).

It is also possible to mix both normalisations, in the sense that for some $2 \leq n \leq L-1$, we have

- the first $n-1$ TT cores are left-orthogonal: for $1 \leq k \leq n-1$

$$
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right]^{T} A_{k}\left[i_{k}\right]=\operatorname{id}_{r_{k}}
$$

- the last $L-n+1$ TT cores are right-orthogonal: for $n+1 \leq k \leq L$

$$
\begin{equation*}
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right] A_{k}\left[i_{k}\right]^{T}=\operatorname{id}_{r_{k-1}} \tag{1.2.6}
\end{equation*}
$$

In that case, the norm of the tensor is carried by the TT core that is not normalised, using the following trick:

$$
\begin{aligned}
\|C\|_{F}^{2} & =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} A_{L}\left[i_{L}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right] \\
& =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} \operatorname{Tr}\left(A_{L}\left[i_{L}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right]\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} \operatorname{Tr}\left(A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right] A_{L}\left[i_{L}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{k}\left[i_{k}\right]\right) \\
& =\sum_{i_{k}=1}^{n_{k}} \operatorname{Tr}\left(A_{k}\left[i_{k}\right]^{T} A_{k}\left[i_{k}\right]\right) .
\end{aligned}
$$

Conversion between left and right orthogonal TT representations

By successive LQ decompositions, it is possible to transform a left-orthogonal to a right orthogonal TT decomposition. Let $\left(A_{1}, \ldots, A_{L}\right)$ be a left-orthogonal TT decomposition of $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$. Then we have

$$
\begin{aligned}
C_{i_{1} \ldots i_{L}} & =A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right] \\
& =A_{1}\left[i_{1}\right]^{\alpha_{1}} A_{2}\left[i_{2}\right]_{\alpha_{1}}^{\alpha_{2}} \cdots A_{L-1}\left[i_{L-1}\right]_{\alpha_{L-2}}^{\alpha_{L-1}}\left(A_{L}\right)_{\alpha_{L-1}}^{i_{L}} \\
& =A_{1}\left[i_{1}\right]^{\alpha_{1}} A_{2}\left[i_{2}\right]_{\alpha_{1}}^{\alpha_{2}} \cdots A_{L-1}\left[i_{L-1}\right]_{\alpha_{L-2}}^{\alpha_{L-1}}\left(L_{L}\right)_{\alpha_{L-1}}^{\beta_{L-1}}\left(Q_{L}\right)_{\beta_{L-1}}^{i_{L}} \\
& =A_{1}\left[i_{1}\right]^{\alpha_{1}} A_{2}\left[i_{2}\right]_{\alpha_{1}}^{\alpha_{2}} \cdots A_{L-2}\left[i_{L-2}\right]_{\alpha_{L-3}}^{\alpha_{L-2}}\left(A_{L-1} L_{L}\right)_{\alpha_{L-2}}^{i_{L-1} \beta_{L-1}}\left(Q_{L}\right)_{\beta_{L-1}}^{i_{L}} \\
& =A_{1}\left[i_{1}\right]^{\alpha_{1}} A_{2}\left[i_{2}\right]_{\alpha_{1}}^{\alpha_{2}} \cdots A_{L-2}\left[i_{L-2}\right]_{\alpha_{L-3}}^{\alpha_{L-2}}\left(L_{L-1}\right)_{\alpha_{L-2}}^{\beta_{L-2}}\left(Q_{L-1}\right)_{\beta_{L-2}}^{i_{L-1} \beta_{L-1}}\left(Q_{L}\right)_{\beta_{L-1}}^{i_{L}},
\end{aligned}
$$

we repeat this process until we reach

$$
\begin{aligned}
C_{i_{1} \ldots i_{L}} & =\left(\begin{array}{lllll}
A_{1} L_{2}
\end{array}\right)^{i_{1} \beta_{1}} \\
\left(Q_{2}\right)_{\beta_{1}}^{i_{2} \beta_{2}} \cdots & \left(Q_{L-1}\right)_{\beta_{L-2}}^{i_{L-1} \beta_{L-1}}
\end{aligned}\left(Q_{L}\right)_{\beta_{L-1}}^{i_{L}} .
$$

We simply need to check that the TT cores B_{2}, \ldots, B_{L} are right-orthogonal:

$$
\sum_{i_{k}=1}^{n_{k}} B_{k}\left[i_{k}\right] B_{k}\left[i_{k}\right]^{*}=\operatorname{id}_{r_{k-1}}
$$

Theorem 1.2.7 (Characterisation of the TT ranks [HRS12b]). Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ be a tensor. Then the following assertions are true:
(i). the HSVD algorithm given in Section 1.2.2 gives a TT decomposition of minimal TT rank;
(ii). the minimal TT rank $\left(r_{1}, \ldots, r_{L-1}\right)$ is equal to the rank of the reshapes of C, i.e.

$$
\begin{equation*}
r_{k}=\operatorname{Rank} C_{i_{1} \ldots i_{k}}^{i_{k+1} \ldots i_{L}} . \tag{1.2.7}
\end{equation*}
$$

Proof. Let $\left(A_{1}, \ldots, A_{L}\right)$ be the TT cores given by the HSVD algorithm. The proof of item (ii) follows from the following identity

$$
C_{i_{1} \ldots i_{k}}^{i_{k+1} i_{L}}=\left(A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{k}\left[i_{k}\right]\right)\left(A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right]\right),
$$

where $\left(A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{k}\left[i_{k}\right]\right) \in \mathbb{R}^{n_{1} \cdots n_{k} \times r_{k}}$ and $\left(A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right]\right) \in \mathbb{R}^{r_{k} \times n_{k+1} \cdots n_{L}}$. By construction and by the property of the SVD, both matrices are full rank, hence $r_{k}=\operatorname{Rank} C_{i_{1} \ldots i_{k}}^{i_{k+1} \ldots i_{L}}$.

These normalisations have the advantage of reducing the gauge freedom in the TT representation.

Proposition 1.2.8 (Gauge freedom of left-orthogonal TT decompositions [HRS12b]). A left-orthogonal TT representation of minimal TT rank $\left(r_{1}, \ldots, r_{L-1}\right)$ is unique up to the insertion of orthogonal matrices, i.e. if $\left(A_{1}, \ldots, A_{L}\right)$ and $\left(B_{1}, \ldots, B_{L}\right)$ are left-orthogonal $T T$ representations of the same tensor C, then there are orthogonal matrices $\left(Q_{k}\right)_{1 \leq k \leq L-1}$, $Q_{k} \in \mathbb{R}^{r_{k} \times r_{k}}$ such that for all $1 \leq i_{k} \leq n_{k}$ we have

$$
\begin{gather*}
A_{1}\left[i_{1}\right] Q_{1}=B_{1}\left[i_{1}\right], \quad Q_{L-1}^{*} A_{L}\left[i_{L}\right]=B_{L}\left[i_{L}\right] \tag{1.2.8}\\
Q_{k-1}^{*} A_{k}\left[i_{k}\right] Q_{k}=B_{k}\left[i_{k}\right], \text { for } k=2, \ldots, L-1 .
\end{gather*}
$$

Proof. The proof relies on the following observation: let $M_{1}, N_{1} \in \mathbb{R}^{p \times r}$ and $M_{2}, N_{2} \in \mathbb{R}^{r \times q}$ be matrices of rank r such that

$$
M_{1} M_{2}=N_{1} N_{2} \quad \text { and } \quad M_{1}^{*} M_{1}=N_{1}^{*} N_{1}=\mathrm{id}_{r},
$$

there is an orthogonal matrix $Q \in \mathbb{R}^{r \times r}$ such that

$$
M_{1}=N_{1} Q \quad \text { and } \quad M_{2}=Q^{*} N_{2} .
$$

The proof of this lemma is straightforward:

$$
N_{2}=N_{1}^{*} M_{1} M_{2}=N_{1}^{*} M_{1} M_{1}^{*} N_{1} N_{2},
$$

which shows that $N_{1}^{*} M_{1}$ is an orthogonal matrix. Denote this matrix Q. Hence $N_{2}=Q M_{2}$ and $M_{1} N_{1}^{*} N_{1}=M_{1}$ thus, $N_{1}=M_{1} Q^{*}$.

The proof then goes by iteration. We have

$$
\begin{aligned}
\left(A_{1}\left[i_{1}\right]\right)\left(A_{2}\left[i_{2}\right] \cdots A_{L}\left[i_{L}\right]\right) & =\left(B_{1}\left[i_{1}\right]\right)\left(B_{2}\left[i_{2}\right] \cdots B_{L}\left[i_{L}\right]\right) \\
\sum_{i_{1}=1}^{n_{1}} A_{1}\left[i_{1}\right]^{*} A_{1}\left[i_{1}\right] & =\sum_{i_{1}=1}^{n_{1}} B_{1}\left[i_{1}\right]^{*} B_{1}\left[i_{1}\right]=\operatorname{id}_{r_{1}} .
\end{aligned}
$$

Since $\left(A_{1}\left[i_{1}\right]\right),\left(A_{2}\left[i_{2}\right] \cdots A_{L}\left[i_{L}\right]\right),\left(B_{1}\left[i_{1}\right]\right)$ and $\left(B_{2}\left[i_{2}\right] \cdots B_{L}\left[i_{L}\right]\right)$ have rank r_{1}, by the lemma there is an orthogonal matrix $Q_{1} \in \mathbb{R}^{r_{1} \times r_{1}}$ such that

$$
\begin{aligned}
A_{1}\left[i_{1}\right] Q_{1} & =B_{1}\left[i_{1}\right] \\
Q_{1}^{*}\left(A_{2}\left[i_{2}\right] \cdots A_{L}\left[i_{L}\right]\right) & =\left(B_{2}\left[i_{2}\right] \cdots B_{L}\left[i_{L}\right]\right) .
\end{aligned}
$$

For the next iteration, we have

$$
\begin{aligned}
\left(Q_{1}^{*} A_{2}\left[i_{2}\right]\right)\left(A_{3}\left[i_{3}\right] \cdots A_{L}\left[i_{L}\right]\right) & =\left(B_{2}\left[i_{2}\right]\right)\left(B_{3}\left[i_{3}\right] \cdots B_{L}\left[i_{L}\right]\right) \\
\sum_{i_{2}=1}^{n_{2}} A_{2}\left[i_{2}\right]^{*} Q_{1} Q_{1}^{*} A_{2}\left[i_{2}\right] & =\sum_{i_{2}=1}^{n_{2}} B_{2}\left[i_{2}\right]^{*} B_{2}\left[i_{2}\right]=\mathrm{id}_{r_{1}} .
\end{aligned}
$$

Applying again the lemma, we have

$$
\begin{aligned}
Q_{1}^{*} A_{2}\left[i_{2}\right] Q_{2} & =B_{2}\left[i_{2}\right] \\
Q_{2}^{*}\left(A_{3}\left[i_{3}\right] \cdots A_{L}\left[i_{L}\right]\right) & =\left(B_{3}\left[i_{3}\right] \cdots B_{L}\left[i_{L}\right]\right) .
\end{aligned}
$$

By iteration, we prove the proposition.

The Vidal representation

A convenient - albeit numerically unstable - way to convert easily between left-orthogonal and right-orthogonal TT representations is to use the Vidal representation [Vid03].

Definition 1.2.9 (Vidal representation [Vid03]). Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ be a tensor. We say that $\left(\Gamma_{k}\right)_{1 \leq k \leq L},\left(\Sigma_{k}\right)_{1 \leq k \leq L-1}$ is a Vidal representation if Σ_{k} are diagonal matrices with positive entries,

$$
\begin{equation*}
C_{i_{1}, \ldots, i_{L}}=\Gamma_{1}\left[i_{1}\right] \Sigma_{1} \Gamma_{2}\left[i_{2}\right] \Sigma_{2} \cdots \Sigma_{L-1} \Gamma_{L}\left[i_{L}\right], \tag{1.2.9}
\end{equation*}
$$

and the matrices $\Gamma_{k}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}}$ satisfy

$$
\begin{gather*}
\sum_{i_{1}=1}^{n_{1}} \Gamma_{1}\left[i_{1}\right]^{*} \Gamma_{1}\left[i_{1}\right]=\operatorname{id}_{r_{1}}, \quad \sum_{i_{L}=1}^{n_{L}} \Gamma_{L}\left[i_{L}\right] \Gamma_{L}\left[i_{L}\right]^{*}=\operatorname{id}_{r_{L-1}} \tag{1.2.10}\\
\forall k=2, \ldots, L-1, \sum_{i_{k}=1}^{n_{k}} \Gamma_{k}\left[i_{k}\right]^{*} \Sigma_{k-1}^{2} \Gamma_{k}\left[i_{k}\right]=\operatorname{id}_{r_{k}}, \quad \sum_{i_{k}=1}^{n_{k}} \Gamma_{k}\left[i_{k}\right] \Sigma_{k}^{2} \Gamma_{k}\left[i_{k}\right]^{*}=\operatorname{id}_{r_{k-1}} . \tag{1.2.11}
\end{gather*}
$$

The Vidal representation directly gives left and right orthogonal TT decompositions:
(i). $\left(A_{1}, \ldots, A_{L}\right)$ left-orthogonal TT representation

$$
\begin{aligned}
& A_{1}\left[i_{1}\right]=\Gamma_{1}\left[i_{1}\right], \quad A_{L}\left[i_{L}\right]=\Sigma_{L-1} \Gamma_{L}\left[i_{L}\right] \\
& A_{k}\left[i_{k}\right]=\Sigma_{k-1} \Gamma_{k}\left[i_{k}\right], \quad k=2, \ldots, L-1
\end{aligned}
$$

(ii). $\left(B_{1}, \ldots, B_{L}\right)$ right-orthogonal TT representation

$$
\begin{array}{ll}
B_{1}\left[i_{1}\right]=\Gamma_{1}\left[i_{1}\right] \Sigma_{1}, & B_{L}\left[i_{L}\right]=\Gamma_{L}\left[i_{L}\right] \\
B_{k}\left[i_{k}\right]=\Gamma_{k}\left[i_{k}\right] \Sigma_{k}, & k=2, \ldots, L-1 .
\end{array}
$$

The conversion from left (or right) orthogonal decomposition to a Vidal representation is more involved [Sch11, Section 4.6]. Let A_{k} be the TT components of a left-orthogonal TT representation. Notice that for all k, let Σ_{k} be the singular values of the tensor reshape $C_{i_{1} \ldots i_{k}}^{i_{k+1} \ldots i_{d}}$. Then we have

$$
C_{i_{1} \ldots i_{k}}^{i_{k+1} \cdots i_{L}}=\underbrace{\left[\begin{array}{c}
A_{1}[1] A_{2}[1] \cdots A_{k}[1] \\
\vdots \\
A_{1}\left[n_{1}\right] A_{2}\left[n_{2}\right] \cdots A_{k}\left[n_{k}\right]
\end{array}\right]}_{=: M_{k} \in \mathbb{R}^{n_{1} \cdots n_{k} \times r_{k}}} \underbrace{\left[A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right]\right]}_{\in \mathbb{R}^{r_{k} \times n_{k+1} \cdots n_{L}}}
$$

Because A_{k} are left-orthogonal, then $M_{k}^{T} M_{k}=\operatorname{id}_{r_{k}}$, hence the singular values of the reshaped tensor is exactly the singular values of the right matrix.

With this remark, we can now write the iterative algorithm to get the Vidal representation of the tensor.

```
Algorithm 1 Left-orthogonal to Vidal representation
Input: \(\left(A_{1}, \ldots, A_{L}\right)\) left-orthogonal TT representation
Output: \(\left(\Gamma_{1}, \ldots, \Gamma_{L}\right),\left(\Sigma_{1}, \ldots, \Sigma_{L-1}\right)\) Vidal representation
    function LeftToVidal \(\left(\left(A_{1}, \ldots, A_{L}\right)\right)\)
        \(U_{L-1}, \Sigma_{L-1}, V_{L}^{T}=\operatorname{svd}\left(\left[A_{L}[1] A_{L}[2] \cdots A_{L}\left[n_{L}\right]\right]\right)\)
        \(\left[\Gamma_{L}[1] \cdots \Gamma_{L}\left[n_{L}\right]\right]=V_{L}^{T}\)
        for \(k=L-1, \ldots, 1\) do
            \(U_{k-1}, \Sigma_{k-1}, V_{k}^{T}=\operatorname{svd}\left(\left[A_{k}[1] U_{k} \Sigma_{k} \cdots A_{k}\left[n_{k}\right] U_{k} \Sigma_{k}\right]\right)\).
            \(\Gamma_{k}\) solution to \(V_{k}^{T}=\left[\Gamma_{k}[1] \Sigma_{k} \cdots \Gamma_{k}\left[n_{k}\right] \Sigma_{k}\right]\)
        end for
        return \(\left(\Gamma_{1}, \ldots, \Gamma_{L}\right),\left(\Sigma_{1}, \ldots, \Sigma_{L-1}\right)\).
    end function
```

By induction, one can show that the singular values of the successive SVD in the previous algorithm are indeed the singular values of the tensor reshape.

Proposition 1.2.10. Let $\left(\Gamma_{k}\right)_{1 \leq k \leq L},\left(\Sigma_{k}\right)_{1 \leq k \leq L-1}$ be a Vidal representation of $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$. Then Σ_{k} is the matrix of the singular values of the reshape $C_{i_{1} \ldots i_{k}}^{i_{k+1} \cdots i_{L}} \in \mathbb{R}^{n_{1} \cdots n_{k} \times n_{k+1} \cdots n_{L}}$.

Proof. By definition of the SVD, the Vidal TT components Γ_{k} satisfy

$$
\sum_{i_{k}=1}^{n_{k}} \Gamma_{k}\left[i_{k}\right] \Sigma_{k}^{2} \Gamma_{k}\left[i_{k}\right]^{T}=\operatorname{id}_{r_{k-1}} .
$$

We also have

$$
\left[A_{k}[1] U_{k} \cdots A_{k}\left[n_{k}\right] U_{k}\right]=\left[U_{k-1} \Sigma_{k-1} \Gamma_{k}[1] \cdots U_{k-1} \Sigma_{k-1} \Gamma_{k}\left[n_{k}\right]\right] .
$$

Thus

$$
\begin{aligned}
\sum_{i_{k}}^{n_{k}} \Gamma_{k}\left[i_{k}\right]^{T} \Sigma_{k-1}^{2} \Gamma_{k}\left[i_{k}\right] & =\sum_{i_{k}}^{n_{k}} \Gamma_{k}\left[i_{k}\right]^{T} \Sigma_{k-1} U_{k-1}^{T} U_{k-1} \Sigma_{k-1} \Gamma_{k}\left[i_{k}\right] \\
& =\sum_{i_{k}}^{n_{k}} U_{k}^{T} A_{k}\left[i_{k}\right]^{T} A_{k}\left[i_{k}\right] U_{k} \\
& =\operatorname{id}_{r_{k}} .
\end{aligned}
$$

1.3 Approximation by tensor trains

A natural way to reduce the TT ranks of the TT representation of a tensor is to truncate the SVD at each step of the HSVD algorithm to a tolerance ε :

$$
\begin{array}{rlr}
C_{i_{1} \ldots i_{L}} & =C_{i_{1}}^{i_{2} \ldots i_{L}} & \text { (reshape of } \left.C \text { to } n_{1} \times n_{2} \cdots n_{L}\right) \\
& \simeq\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(\Sigma_{1}^{\varepsilon} V_{1}^{T}\right)_{\alpha_{1}}^{i_{2} \ldots i_{L}} & \text { (truncated SVD) } \\
& \simeq\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(\Sigma_{1}^{\varepsilon} V_{1}^{T}\right)_{\alpha_{1} \ldots i_{L}}^{i_{3}} & \left(\text { reshape of } \Sigma_{1}^{\varepsilon} V_{1}^{T}\right) \\
& \simeq\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}}\left(\Sigma_{2}^{\varepsilon} V_{2}^{T}\right)_{\alpha_{2}}^{i_{3} \ldots i_{L}} & \text { (truncated SVD of } \left.\Sigma_{1}^{\varepsilon} V_{1}^{T}\right) \\
& \simeq\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}}\left(\Sigma_{2}^{\varepsilon} V_{2}^{T}\right)_{\alpha_{2} i_{3}}^{i_{4} i_{L}} & \text { (reshape of } \left.\Sigma_{2}^{\varepsilon} V_{2}^{T}\right),
\end{array}
$$

we repeat the process until we get

$$
C_{i_{1} \ldots i_{L}} \simeq\left(U_{1}\right)_{i_{1}}^{\alpha_{1}}\left(U_{2}\right)_{\alpha_{1} i_{2}}^{\alpha_{2}} \cdots\left(U_{L-1}\right)_{\alpha_{L-2} i_{L-1}}^{\alpha_{L-1}}\left(\sum_{L-1}^{\varepsilon} V_{L-1}\right)_{\alpha_{L-1}}^{i_{L}} .
$$

This algorithm is often called a TT rounding [Ose11] or TT compression. Truncating the successive SVDs gives an estimate on the best approximation by a tensor train of fixed TT ranks.

Theorem 1.3.1 ([Gra10, Ose11, Hac12, Hac14]). Let $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}},\left(\tilde{r}_{1}, \ldots, \tilde{r}_{L-1}\right) \in$ \mathbb{N}^{L-1} and $\mathcal{M}_{\tilde{\mathbf{r}}}$ be the space of tensor trains of ranks bounded by $\left(\tilde{r}_{1}, \ldots, \tilde{r}_{L-1}\right)$. Then we have

$$
\min _{V \in \mathcal{M}_{\overline{\mathfrak{r}}}}\|C-V\| \leq \sqrt{\sum_{k=1}^{L-1} \sum_{j>\tilde{r}_{k}} \sigma_{j}^{(k)^{2}}} \leq \sqrt{L-1} \min _{V \in \mathcal{M}_{\overline{\mathfrak{r}}}}\|C-V\|,
$$

where for $1 \leq k \leq L-1,\left(\sigma_{j}^{(k)}\right)_{1 \leq j \leq r_{k}}$ are the singular values of the reshape $\left(\Psi_{\mu_{k+1} \ldots \mu_{L}}^{\mu_{1} \ldots \mu_{k}}\right)$.
Proof. The proof of the left-hand side inequality follows from the HSVD algorithm. Let $\Pi_{k}: \mathbb{R}^{n_{1} \cdots n_{k} \times n_{k+1} \cdots n_{L}} \rightarrow \mathbb{R}^{n_{1} \cdots n_{k} \times n_{k+1} \cdots n_{L}}$ be the SVD truncation of rank \tilde{r}_{k}. This operator is an orthogonal projection in the Hilbert space $\mathbb{R}^{n_{1} \cdots n_{k} \times n_{k+1} \cdots n_{L}}$ equipped with the Frobenius norm. The HSVD algorithm with truncation at each step is the tensor $\Pi_{L-1} \cdots \Pi_{1} C$. We thus have using the property of the SVD truncation:

$$
\begin{aligned}
\left\|C-\Pi_{L-1} \cdots \Pi_{1} C\right\|_{F}^{2} & \leq\left\|\Pi_{L-1}^{\perp} C\right\|^{2}+\left\|\Pi_{L-1} C-\Pi_{L-1} \cdots \Pi_{1} C\right\|_{F}^{2} \\
& \leq \sum_{j>\tilde{r}_{k}} \sigma_{j}^{(k)^{2}}+\left\|C-\Pi_{L-2} \cdots \Pi_{1} C\right\|_{F}^{2},
\end{aligned}
$$

hence by iteration

$$
\left\|C-\Pi_{L-1} \cdots \Pi_{1} C\right\|_{F}^{2} \leq \sum_{k=1}^{L-1} \sum_{j>\tilde{r}_{k}} \sigma_{j}^{(k)^{2}} .
$$

This provides a bound on the best approximation by a tensor train in $\mathcal{M}_{\tilde{\mathbf{r}}}$.
For the lower bound on the best approximation $C_{\text {best }}$, we have for each k by definition of the SVD truncation

$$
\left\|C-\Pi_{k} C\right\|_{F}^{2}=\sum_{j>\tilde{r}_{k}} \sigma_{j}^{(k)^{2}} \leq\left\|C-C_{\text {best }}\right\|_{F}^{2},
$$

hence by summing over k we get the lower bound.
A drawback of the HSVD algorithm or its truncated version is that it requires to handle the full tensor. If the tensor is already in a TT format, it is possible to reduce the cost of this truncation. Let $\left(A_{1}, \ldots, A_{L}\right)$ be a right-orthogonal TT representation of the tensor $C \in \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$. The first reshape is

$$
C_{i_{1}}^{i_{2} \ldots i_{L}}=\left[\begin{array}{c}
A_{1}[1] \\
\vdots \\
A_{1}\left[n_{1}\right]
\end{array}\right]\left[\begin{array}{lll}
A_{2}[1] \cdots A_{L}[1] & \cdots & \left.A_{2}\left[n_{2}\right] \cdots A_{L}\left[n_{L}\right]\right], ~
\end{array}\right.
$$

and since the TT cores $\left(A_{2}, \ldots, A_{L}\right)$ are right-orthogonal, the matrix $V_{2}=\left[A_{2}[1] \cdots A_{L}[1] \quad \cdots \quad A_{2}\left[n_{2}\right] \cdots A_{L}\left[n_{k}\right]\right]$ satisfies $V_{2} V_{2}^{*}=\mathrm{id}_{r_{1}}$. Hence the first step of the HSVD truncation can be reduced to the SVD of the reshape of A_{1}. The same would hold for the next step of the HSVD truncation, hence the total cost of the TT compression of C in a TT format is reduced to $\mathcal{O}\left(L r^{3}\right)$ where $r=\max \left(r_{k}\right)$.

The algorithm is summarised in Algorithm 2.

1.4 Manifold of tensor trains

Even in finite-dimensions, the example exhibited in eq. (1.1.5) shows that the set

$$
\mathcal{M}_{\mathrm{CP}_{\leq r}}=\left\{C=\sum_{i=1}^{r} v_{1}^{(i)} \otimes \cdots \otimes v_{L}^{(i)}, \forall 1 \leq i \leq r, 1 \leq j \leq L, v_{j}^{(i)} \in \mathbb{R}^{n_{j}}\right\}
$$

is not closed if $L \geq 3$.
For tensor trains, the question of the closedness has a clear answer, as the characterisation of the TT rank relies on the matricisation of the tensor.

Proposition 1.4.1. The set of tensor trains with TT rank less that r

$$
\mathcal{M}_{\mathrm{TT}_{\leq r}}=\left\{C \mid \forall 1 \leq i_{k} \leq n_{k}, C_{i_{1} \ldots i_{L}}=A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right], A_{k}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}}, r_{k} \leq r\right\}
$$

is a closed set.

Algorithm 2 TT rounding algorithm
Input: $\left(A_{1}, \ldots, A_{L}\right)$ right-orthogonal TT representation, $\varepsilon>0$ tolerance
Output: $\left(A_{1}^{\varepsilon}, \ldots, A_{L}^{\varepsilon}\right)$ TT representation such that $\left\|\operatorname{TT}\left(A_{i}^{\varepsilon}\right)-\operatorname{TT}\left(A_{i}\right)\right\|_{F} \leq \sqrt{L-1} \varepsilon$

```
    function \(\operatorname{HSVD}\left(\left(A_{1}, \ldots, A_{L}\right), \varepsilon\right)\)
        for \(k=1, \ldots, L-1\) do
            \(U_{k}, \Sigma_{k}, V_{k}^{T}=\operatorname{svd}\left(\left[\begin{array}{c}A_{k}[1] \\ \vdots \\ A_{k}\left[n_{k}\right]\end{array}\right]\right)\)
            \(r_{k}=\arg \max \left\|\Sigma_{k}[1: r]-\Sigma_{k}\right\| \leq \varepsilon\)
            \(\left(A_{k}^{\varepsilon}\right)_{i_{k} \alpha_{k-1}}^{\alpha_{k}}=\left(U_{k}\right)_{i_{k} \alpha_{k-1}}^{\alpha_{k}}, \quad i_{k}=1, \ldots, n_{k}, \alpha_{k-1}=1, \ldots, r_{k-1}, \alpha_{k}=1, \ldots, r_{k}\)
            \(A_{k+1}\left[i_{k+1}\right]=\Sigma_{k}[1: r] V_{k}^{T}[1: r,:] A_{k+1}\left[i_{k+1}\right], \quad i_{k+1}=1, \ldots, n_{k+1}\)
        end for
        \(A_{L}^{\varepsilon}=A_{L}\)
        return \(\left(A_{1}^{\varepsilon}, \ldots, A_{L}^{\varepsilon}\right)\)
    end function
```

Proof. The proof follows from the characterisation of the TT ranks given by Theorem 1.2.7: given a tensor C, for $1 \leq k \leq L-1$, the minimal TT rank r_{k} is equal to the rank of the matrix $C_{i_{1} \ldots i_{k}}^{i_{k+1} \ldots i_{L}}$. We conclude by recalling that the set of matrices with rank less than r is a closed set.

Proposition 1.4.2. The set of tensor trains with TT rank $\mathbf{r}=\left(r_{1}, \ldots, r_{L-1}\right)$

$$
\mathcal{M}_{\mathrm{TT}_{\mathrm{r}}}=\left\{C \mid \forall 1 \leq i_{k} \leq n_{k}, C_{i_{1} \ldots i_{L}}=A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right], A_{k}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}}\right\},
$$

is of dimension

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}_{\mathrm{TT}_{\mathbf{r}}}=\sum_{i=1}^{L} r_{i-1} n_{i} r_{i}-\sum_{i=1}^{L-1} r_{i}^{2} \tag{1.4.1}
\end{equation*}
$$

Proof. Two TT representations $\left(A_{1}, \ldots, A_{L}\right)$ and $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{L}\right)$ of a same tensor are related by a gauge $\left(G_{1}, \ldots, G_{L-1}\right) \in \mathrm{GL}_{r_{1}}(\mathbb{R}) \times \cdots \mathrm{GL}_{r_{L-1}}(\mathbb{R})$

$$
\forall 1 \leq i_{k} \leq n_{k}, A_{k}\left[i_{k}\right]=G_{k-1} \tilde{A}_{k}\left[i_{k}\right] G_{k}, \quad k=1, \ldots, L, \quad\left(G_{0}=G_{L}=1\right)
$$

The dimension of $\mathrm{GL}_{r_{k}}(\mathbb{R})$ is r_{k}^{2}, hence the dimension of $\mathcal{M}_{\mathrm{TT}_{\mathbf{r}}}$ is

$$
\operatorname{dim} \mathcal{M}_{\mathrm{TT}_{\mathbf{r}}}=\sum_{i=1}^{L} r_{i-1} n_{i} r_{i}-\sum_{i=1}^{L-1} r_{i}^{2} .
$$

Proposition 1.4.3 (Tangent space of $\left.\mathcal{M}_{\mathrm{TT}_{\mathrm{r}}}[\mathrm{HRS} 12 \mathrm{~b}]\right)$. Let $A \in \mathcal{M}_{\mathrm{T} \mathrm{T}_{\mathrm{r}}}$ and $\left(A_{1}, \ldots, A_{L}\right)$ be a left-orthogonal TT representation of A. Let $\delta A \in \mathcal{T}_{A} \mathcal{M}_{\mathrm{TT}_{\mathrm{r}}}$.

There are unique components $\left(W_{k}\right)_{1 \leq k \leq L} \in \bigotimes_{k=1}^{L} \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}$ such that

$$
\begin{equation*}
\delta A=\sum_{k=1}^{L} \delta A^{(k)} \tag{1.4.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta A_{i_{1} \ldots i_{L}}^{(k)}=A_{1}\left[i_{1}\right] \cdots A_{k-1}\left[i_{k-1}\right] W_{k}\left[i_{k}\right] A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right], \tag{1.4.3}
\end{equation*}
$$

and where for $k=1, \ldots, L-1$ we have

$$
\begin{equation*}
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right]^{T} W_{k}\left[i_{k}\right]=\mathbf{0}_{r_{k} \times r_{k}} \tag{1.4.4}
\end{equation*}
$$

Proof. By definition of the tangent space $\mathcal{T}_{A} \mathcal{M}_{\mathrm{TT}_{\mathrm{r}}}$, the tangent vectors are given by the derivatives $\dot{\Gamma}$ of the differentiable curves $\Gamma: \mathbb{R} \rightarrow \mathscr{M}_{\mathrm{TT}_{\mathrm{r}}}$ such that $\Gamma(0)=A$.

For all $t \in \mathbb{R}$, since $\Gamma(t) \in \mathcal{M}_{\mathrm{TT}_{\mathrm{r}}}$, we can choose a left-orthogonal TT representation of $\Gamma(t)$ such that

$$
\Gamma(t)_{i_{1} \ldots i_{L}}=\Gamma_{1}^{(t)}\left[i_{1}\right] \cdots \Gamma_{L}^{(t)}\left[i_{L}\right]
$$

where for all $1 \leq k \leq L, t \mapsto \Gamma_{k}^{(t)} \in \mathbb{R}^{n_{k} \times r_{k-1} \times r_{k}}$ is differentiable and $\Gamma_{k}^{(0)}=A_{k}$.
Since for $1 \leq k \leq L-1, \sum_{i_{k}=1}^{n_{k}} \Gamma_{k}^{(t)}\left[i_{k}\right]^{T} \Gamma_{k}^{(t)}\left[i_{k}\right]=\operatorname{id}_{r_{k}}$, there is a differentiable function $t \mapsto U_{k}(t) \in \mathcal{O}_{n_{k} r_{k-1}}(\mathbb{R})$ such that

$$
\left[\begin{array}{c}
\Gamma_{k}^{(t)}[1] \\
\vdots \\
\Gamma_{k}^{(t)}\left[n_{k}\right]
\end{array}\right]=U_{k}(t)\left[\begin{array}{c}
A_{k}[1] \\
\vdots \\
A_{k}\left[n_{k}\right]
\end{array}\right] .
$$

This implies that $\left[\begin{array}{c}\dot{\Gamma}_{k}^{(0)}[1] \\ \vdots \\ \dot{\Gamma}_{k}^{(0)}\left[n_{k}\right]\end{array}\right]=S_{k}\left[\begin{array}{c}A_{k}[1] \\ \vdots \\ A_{k}\left[n_{k}\right]\end{array}\right]$ for some antisymmetric matrix $S_{k} \in \mathbb{R}^{n_{k} r_{k-1} \times n_{k} r_{k-1}}$. Let

$$
\left[\begin{array}{c}
W_{k}[1] \\
\vdots \\
W_{k}\left[n_{k}\right]
\end{array}\right]=S_{k}\left[\begin{array}{c}
A_{k}[1] \\
\vdots \\
A_{k}\left[n_{k}\right]
\end{array}\right] .
$$

Then

$$
\sum_{i_{k}=1}^{n_{k}} A_{k}\left[i_{k}\right]^{T} W_{k}\left[i_{k}\right]=\left[\begin{array}{lll}
A_{k}[1]^{T} & \ldots & \left.A_{k}\left[n_{k}\right]^{T}\right]
\end{array} S_{k}\left[\begin{array}{c}
A_{k}[1] \\
\vdots \\
A_{k}\left[n_{k}\right]
\end{array}\right]\right.
$$

which is a symmetric and an antisymmetric matrix, hence it is zero.
The tangent vectors are hence necessarily of the form given by eq. (1.4.2)-(1.4.4). By dimension counting and invoking Proposition 1.4.2 shows the uniqueness of the representation.

Chapter 2

DMRG

Density matrix renormalisation group [Whi92] (DMRG) is an alternating scheme to solve linear problems or eigenvalue problems in the tensor train format. In the mathematical community, it is also referred to the alternating linear scheme (ALS) in its simplest version or to the modified $A L S$ (MALS) [HRS12a], which is the equivalent to the two-site DMRG. In DMRG, given a symmetric matrix $H \in \mathbb{R}^{n_{1} \cdots n_{L} \times n_{1} \cdots n_{L}}$, we want to solve for $x \in \mathbb{R}^{n_{1} \cdots n_{L}}$ the linear problem

$$
\begin{equation*}
H x=b, \tag{2.0.1}
\end{equation*}
$$

for a given $b \in \mathbb{R}^{n_{1} \cdots n_{L}}$, or for $(\lambda, x) \in \mathbb{R} \times \mathbb{R}^{n_{1} \cdots n_{L}}$ the lowest eigenvalue problem

$$
\begin{equation*}
H x=\lambda x . \tag{2.0.2}
\end{equation*}
$$

For both problems, a tensor train representation of the operator H is needed in order to efficiently implement the DMRG algorithm.

2.1 Tensor train operators

2.1.1 Definition and graphical representation

Definition 2.1.1 (Tensor train operator). Let $H \in \mathbb{R}^{n_{1} \cdots n_{L} \times n_{1} \cdots n_{L}}$ be a matrix. A tensor train operator (TTO) representation of the matrix is any tuple of order 4 tensors $\left(H_{1}, \ldots, H_{L}\right), H_{k} \in \mathbb{R}^{n_{k} \times n_{k} \times R_{k-1} \times R_{k}} \quad\left(R_{0}=R_{L}=1\right)$ such that

$$
H_{i_{1} \ldots i_{L}}^{j_{1} \ldots j_{L}}=H_{1}\left[i_{1}, j_{1}\right] \cdots H_{L}\left[i_{L}, j_{L}\right], \forall i_{k}, j_{k}=1, \ldots, n_{k} .
$$

The diagrammatic representation of a TTO is similar to the diagrammatic of a TT as illustrated in Figure 2.1.

A TTO representation of a matrix can be obtained by reordering the indices of the matrix H and performing a TT-SVD of the resulting tensor. More precisely, by defining

Figure 2.1: Diagrammatic representation of a TTO
the tensor $\widetilde{H} \in \mathbb{R}^{n_{1}^{2} \times \cdots \times n_{L}^{2}}$

$$
\widetilde{H}_{i_{1} j_{1}, \ldots ; i_{L} j_{L}}=H_{i_{1} \ldots i_{L}}^{j_{1} \ldots j_{L}},
$$

we realise that a TTO representation is simply a TT representation of \widetilde{H}.
Proposition 2.1.2. Let $H \in \mathbb{R}^{n_{1} \cdots n_{L} \times n_{1} \cdots n_{L}}$ be a symmetric matrix. Then there is a TTO representation of H such that

$$
\begin{equation*}
\forall 1 \leq i_{k}, j_{k} \leq n_{k}, H_{k}\left[i_{k}, j_{k}\right]=H_{k}\left[j_{k}, i_{k}\right], \quad k=1, \ldots, L \tag{2.1.1}
\end{equation*}
$$

Proof.
Example 2.1.3. Let us consider the following matrix $H \in \mathbb{R}^{n^{L} \times n^{L}}$

$$
\begin{equation*}
H=h \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}+\cdots+\mathrm{id} \otimes \mathrm{id} \otimes \cdots \otimes h \tag{2.1.2}
\end{equation*}
$$

where $h \in \mathbb{R}^{n \times n}$ is a symmetric matrix and id is the identity in $\mathbb{R}^{n \times n}$. The matrix $h \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}$ is in fact a TTO of rank 1. A naïve application of Proposition 2.1.4 yields a TTO representation of H of rank L. However it is possible to achieve a rank 2 representation with the following construction

$$
\begin{align*}
& H_{1}\left[i_{1}, j_{1}\right]=\left(h_{i_{1} j_{1}} \delta_{i_{1} j_{1}}\right), \quad H_{L}\left[i_{L}, j_{L}\right]=\binom{\delta_{i_{L} j_{L}}}{h_{i_{L} j_{L}}} \tag{2.1.3}\\
& H_{k}\left[i_{k}, j_{k}\right]=\left(\begin{array}{cc}
\delta_{i_{k} j_{k}} & 0 \\
h_{i_{k} j_{k}} & \delta_{i_{k} j_{k}}
\end{array}\right), \quad k=2, \ldots, L-1
\end{align*}
$$

Note that this representation also satisfies the property stated in Proposition 2.1.2.

2.1.2 Algebraic properties

Like the TT representation of vectors, the TTO format has some algebraic stability property.
Proposition 2.1.4. Let $G, H \in \mathbb{R}^{n_{1} \cdots n_{L} \times n_{1} \cdots n_{L}}$ be matrices and $\left(G_{1}, \ldots, G_{L}\right)$, $G_{k} \in$ $\mathbb{R}^{n_{k} \times n_{k} \times R_{k-1}^{G} \times R_{k}^{G}}$ and $\left(H_{1}, \ldots, H_{L}\right), H_{k} \in \mathbb{R}^{n_{k} \times n_{k} \times R_{k-1}^{H} \times R_{k}^{H}}$ be respectively TTO representations of G and H. Let $A, B \in \mathbb{R}^{n_{1} \cdots n_{L}}$ be vectors with respcetive $T T$ representations $\left(A_{1}, \ldots, A_{L}\right), A_{k} \in \mathbb{R}^{n_{k} \times r_{k-1}^{A} \times r_{k}^{A}},\left(B_{1}, \ldots, B_{L}\right), B_{k} \in \mathbb{R}^{n_{k} \times r_{k-1}^{B} \times r_{k}^{B}}$. Then
(i). the sum $G+H$ has a TTO representation $\left(S_{1}, \ldots, S_{L}\right)$ given by

$$
\left.\begin{array}{r}
S_{1}\left[i_{1}, j_{1}\right]=\left(G_{1}\left[i_{1}, j_{1}\right]\right.
\end{array} H_{1}\left[i_{1}, j_{1}\right]\right), \quad S_{L}\left[i_{L}, j_{L}\right]=\binom{G_{L}\left[i_{L}, j_{L}\right]}{H_{L}\left[i_{L}, j_{L}\right]} .\left\{\begin{array}{cc}
0 \\
S_{k}\left[i_{k}, j_{k}\right]=\left(\begin{array}{cc}
G_{k}\left[i_{k}, j_{k}\right] & H_{k}\left[i_{k}, j_{k}\right]
\end{array}\right), k=2, \ldots, L-1 \tag{2.1.4}
\end{array}\right.
$$

(ii). the matrix-vector product $C=H A$ has a TT representation $\left(C_{1}, \ldots, C_{L}\right)$ with $C_{k}\left[j_{k}\right] \in \mathbb{R}^{R_{k-1}^{H} r_{k-1}^{A} \times R_{k}^{H} r_{k}^{A}}$

$$
\begin{equation*}
C_{k}\left[i_{k}\right]=\sum_{j_{k}=1}^{n_{k}} H_{k}\left[i_{k}, j_{k}\right] \otimes A_{k}\left[j_{k}\right], \quad k=1, \ldots, L . \tag{2.1.5}
\end{equation*}
$$

(iii). the product GH has a TTO representation $\left(P_{1}, \ldots, P_{L}\right)$ given by

$$
\begin{equation*}
P_{k}\left[i_{k}, j_{k}\right]=\sum_{\ell_{k}=1}^{n_{k}} G_{k}\left[i_{k}, \ell_{k}\right] \otimes H_{k}\left[\ell_{k}, j_{k}\right], \quad k=1, \ldots, L . \tag{2.1.6}
\end{equation*}
$$

Proof. This is a direct computation.
Remark 2.1.5. The TTO representations of the sum and the product of the operators are not optimal. This is clear in the case of the sum $G+H$ when we consider $G=H$. A TT rounding step is required in order to reduce the TTO ranks of the representation. This is not innocuous as essential properties of the matrix can be lost in the rounding procedure (symmetry for instance).

A diagrammatic proof of the formula for the product of two TTO representations is given in Figure 2.2, avoiding cumbersome computations.

2.2 The DMRG algorithm

The DMRG algorithm is an algorithm to solve linear systems $H x_{*}=b$ or the lowest eigenvalue problem $H x_{*}=\lambda x_{*}$ using the variational characterisation of the solution to both problems. As such it is limited in the resolution of linear problems with symmetric matrices. In the following, we assume that H is a symmetric, positive-definite matrix.

Assumption 2.2.1. The matrix $H \in \mathbb{R}^{n_{1} \cdots n_{L} \times n_{1} \cdots n_{L}}$ is symmetric and positive-definite.
The solution to the linear system $H x=b$ is also the minimiser of the functional

$$
\begin{equation*}
x_{*}=\underset{x \in \mathbb{R}^{n_{1} \cdots n_{L}}}{\arg \min } \frac{1}{2}\langle x, H x\rangle-\langle b, x\rangle . \tag{2.2.1}
\end{equation*}
$$

Using the Rayleigh-Ritz principle, the lowest eigenvalue of H is given by

$$
\begin{equation*}
x_{*}=\underset{x \in \mathbb{R}^{n_{1} \cdots n_{L}}}{\arg \min _{L}} \frac{\langle x, H x\rangle}{\langle x, x\rangle} . \tag{2.2.2}
\end{equation*}
$$

(a) Diagrammatic representation of the product of two TTO

(b) Diagrammatic representation of the product of two TTO

Figure 2.2: Diagrammatic proof of the product of two TTO. The left panel is the diagrammatic representation of the product of two TTO. On the right panel, the boxed tensors P_{k} are the TTO cores of a TTO representation of the product $G H$, provided that the double edges shared between neighbouring P_{k} are gathered into one edge.

2.2.1 General algorithm

The DMRG algorithm, also known as alternating linear scheme (ALS) [HRS12a], is an alternating optimisation over the TT manifold. The general idea is to perform a descent step for each TT core separately. More precisely, the solution to the linear system $H x_{*}=b$ is approximated on the TT manifold

$$
\begin{equation*}
\mathscr{M}_{\mathrm{TT}_{\leq r}}=\left\{C \mid \forall 1 \leq i_{k} \leq n_{k}, C_{i_{1} \ldots i_{L}}=A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right], A_{k}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}}, r_{k} \leq r\right\} . \tag{2.2.3}
\end{equation*}
$$

Denoting by j the map $J \circ$ TT where

$$
\mathrm{TT}:\left\{\begin{aligned}
\mathbb{R}^{n_{1} \times r_{0} \times r_{1}} \times \cdots \times \mathbb{R}^{n_{L} \times r_{L-1} \times r_{L}} & \rightarrow \mathbb{R}^{n_{1} \cdots n_{L}} \\
\left(A_{1}, \ldots, A_{L}\right) & \mapsto\left(A_{1}\left[i_{1}\right] \cdots A_{L}\left[i_{L}\right]\right),
\end{aligned}\right.
$$

and $J(x)=\frac{1}{2}\langle x, H x\rangle-\langle b, x\rangle$.
Minimising J over the manifold $\mathscr{M}_{\mathrm{TT}_{\leq r}}$ is the same as minimising the functional j.
The optimisation steps (2.2.4) and (2.2.5) are called microsteps. An iteration over the loop n is called a sweep. Notice that at each microstep (2.2.4) or (2.2.5) the left TT cores are left-orthogonal and the right-TT cores are right-orthogonal.

The microsteps of the DMRG algorithm applied to the linear problem $H x_{*}=b$ are linear problems involving an operator $P_{k}: \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}} \rightarrow \mathbb{R}^{n_{1} \times \cdots \times n_{L}}$ defined by

$$
\begin{equation*}
\left(P_{k} V\right)_{i_{1} \ldots i_{L}}=A_{1}\left[i_{1}\right] \cdots A_{k-1}\left[i_{k-1}\right] V\left[i_{k}\right] A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right], \tag{2.2.6}
\end{equation*}
$$

where $\left(A_{1}, \ldots, A_{L}\right)$ are TT cores that are left-orthogonal for $j \leq k-1$ and right-orthogonal for $j \geq k+1$. The tensor $B_{k}^{(n+1)}$ of the microstep problem (2.2.4) is the solution to the linear system

$$
\begin{equation*}
P_{k}^{T} A P_{k} B_{k}^{(n+1)}=P_{k}^{T} b . \tag{2.2.7}
\end{equation*}
$$

```
Algorithm 3 DMRG with sweeps
Input: \(\left(A_{1}^{(0)}, \ldots, A_{L}^{(0)}\right)\) in right-orthogonal TT representation
Output: \(\left(A_{1}^{(n)}, \ldots, A_{L}^{(n)}\right) \in \mathscr{M}_{\mathrm{TT}_{\leq r}}\) approximation of the minimiser in of \(J\)
    function \(\operatorname{DMRG}\left(\left(A_{1}^{(0)}, \ldots, A_{L}^{(0)}\right)\right)\)
        \(n=0\)
        while not converged do
        for \(k=1,2, \ldots, L-1\) do \(\quad \triangleright\) Forward half-sweep
            \(B_{k}^{\left(n+\frac{1}{2}\right)}=\operatorname{V}_{V_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}}^{\arg \min } j\left(A_{1}^{\left(n+\frac{1}{2}\right)}, \ldots, A_{k-1}^{\left(n+\frac{1}{2}\right)}, V_{k}, A_{k+1}^{(n)}, \ldots, A_{L}^{(n)}\right)\)
                \(Q, R=\operatorname{qr}\left(\left(B_{k}^{\left(n+\frac{1}{2}\right)}\right)_{\alpha_{k-1} i_{k}}^{\beta_{k}}\right) \quad \triangleright \mathrm{QR}\) decomposition
                \(\left(A_{k}^{\left(n+\frac{1}{2}\right)}\left[i_{k}\right]\right)_{\alpha_{k-1}}^{\alpha_{k}}=Q_{\alpha_{k-1} i_{k}}^{\alpha_{k}} \quad \triangleright \operatorname{Keep} Q\)
                \(\left(A_{k+1}^{(n)}\left[i_{k+1}\right]\right)_{\alpha_{k}}^{\alpha_{k+1}} \leftarrow\left(R A_{k+1}^{(n)}\left[i_{k+1}\right]\right)_{\alpha_{k}}^{\alpha_{k+1}} . \quad \triangleright\) Shift \(R\) to the right
    end for
    for \(k=d, d-1, \ldots, 2\) do \(\quad \triangleright\) Backward half-sweep
    \(B_{k}^{(n+1)}=\underset{V_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}}{\arg \min } j\left(A_{1}^{\left(n+\frac{1}{2}\right)}, \ldots, A_{k-1}^{\left(n+\frac{1}{2}\right)}, V_{k}, A_{k+1}^{(n+1)}, \ldots, A_{L}^{(n+1)}\right)\)
            \(L, Q=1 \mathrm{q}\left(\left(B_{k}^{(n+1)}\right)_{\alpha_{k-1} i_{k}}^{\beta_{k}}\right) \quad \triangleright \mathrm{LQ}\) decomposition
            \(\left(A_{k}^{(n+1)}\left[i_{k}\right]\right)_{\alpha_{k-1}}^{\alpha_{k}}=(Q)_{\alpha_{k-1}}^{\alpha_{k} i_{k}} \quad \triangleright \operatorname{Keep} Q\)
        \(\left(A_{k-1}^{\left(n+\frac{1}{2}\right)}\left[i_{k-1}\right]\right)_{\alpha_{k-2}}^{\alpha_{k-1}} \leftarrow\left(A_{k-1}^{\left(n+\frac{1}{2}\right)}\left[i_{k-1}\right] L\right)_{\alpha_{k-2}}^{\alpha_{k-1}} \quad \triangleright\) Shift \(L\) to the left
        end for
        \(n=n+1\)
    end while
    return \(\left(A_{1}^{(n)}, \ldots, A_{L}^{(n)}\right)\)
    end function
```

Proposition 2.2.2. Assume that $\left(A_{i}^{\left(n+\frac{1}{2}\right)}\right)_{1 \leq i \leq k-1}$ are left-orthogonal and $\left(A_{i}^{(n)}\right)_{k+1 \leq i \leq L}$ are right-orthogonal. Then the microstep (2.2.4) has a unique solution.

Proof. It is equivalent to check that eq. (2.2.7) has a unique solution, i.e. that the matrix $P_{k}^{T} H P_{k}$ is invertible. As H is symmetric and positive-definite, it is sufficient to prove that P_{k} is an injective operator. Let $V \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}$ such that $\left\|P_{k} V\right\|=0$. Then we have

$$
\begin{aligned}
\left\|P_{k} V\right\|^{2}= & \sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} \operatorname{Tr}\left(A_{L}\left[i_{L}\right]^{T} \cdots A_{k+1}\left[i_{k+1}\right]^{T} V\left[i_{k}\right]^{T} A_{k-1}\left[i_{k-1}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T}\right. \\
= & \left.A_{1}\left[i_{1}\right] \cdots A_{k-1}\left[i_{k-1}\right] V\left[i_{k}\right] A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right]\right) \\
= & \sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{L}=1}^{n_{L}} \operatorname{Tr}\left(V\left[i_{k}\right]^{T} A_{k-1}\left[i_{k-1}\right]^{T} \cdots A_{1}\left[i_{1}\right]^{T} A_{1}\left[i_{1}\right] \cdots A_{k-1}\left[i_{k-1}\right] V\left[i_{k}\right]\right. \\
& \left.A_{k+1}\left[i_{k+1}\right] \cdots A_{L}\left[i_{L}\right] A_{L}\left[i_{L}\right]^{T} \cdots A_{k+1}\left[i_{k+1}\right]^{T}\right) \\
= & \sum_{i_{k}=1}^{n_{k}} \operatorname{Tr}\left(V\left[i_{k}\right]^{T} V\left[i_{k}\right]\right),
\end{aligned}
$$

where we have used the cyclicity of the trace and the orthogonality of the TT cores. Hence $P_{k} V=0$ if and only if $V=0$.

2.2.2 Implementation details

2.3 Convergence of DMRG

The global convergence of DMRG is a difficult problem, as the TT manifold is not a convex set. The convergence results on DMRG are local and assume that the Hessian of the functional j is of full-rank.

Assumption 2.3.1. At the local minimiser A_{*}, the Hessian $j^{\prime \prime}$ is of full rank

$$
\begin{equation*}
\operatorname{rank} j^{\prime \prime}\left(A_{*}\right)=\sum_{i=1}^{L} r_{i-1} n_{i} r_{i}-\sum_{i=1}^{L-1} r_{i}^{2}, \quad \text { i.e. } \operatorname{ker} j^{\prime \prime}\left(A_{*}\right)=T_{A_{*}} \mathcal{M}_{\mathrm{TT} \leq r} . \tag{2.3.1}
\end{equation*}
$$

2.3.1 Local convergence of DMRG

2.3.2 Half-sweep convergence

2.4 Optimisation on the TT-manifold

Bibliography

[BSU16] Markus Bachmayr, Reinhold Schneider, and André Uschmajew. Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math., 16(6):1423-1472, 2016.
[DDGS16] Wolfgang Dahmen, Ronald DeVore, Lars Grasedyck, and Endre Süli. Tensorsparsity of solutions to high-dimensional elliptic partial differential equations. Found. Comput. Math., 16(4):813-874, 2016.
[DMNS98] Dukelsky, J., Martín-Delgado, M. A., Nishino, T., and Sierra, G. Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains. Europhys. Lett., 43(4):457-462, 1998.
[DSL08] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084-1127, 2008.
[Gra10] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl., 31(4):2029-2054, 2009/10.
[Hac12] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2012.
[Hac14] Wolfgang Hackbusch. Numerical tensor calculus. Acta Numer., 23:651-742, 2014.
[Has07] Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of statistical mechanics: theory and experiment, 2007(08):P08024, 2007.
[HRS12a] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format. SIAM Journal on Scientific Computing, 34(2):A683-A713, January 2012.
[HRS12b] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. On manifolds of tensors of fixed TT-rank. Numer. Math., 120(4):701-731, 2012.
[KSZ91] A Klumper, A Schadschneider, and J Zittartz. Equivalence and solution of anisotropic spin-1 models and generalized t-j fermion models in one dimension. Journal of Physics A: Mathematical and General, 24(16):L955-L959, aug 1991.
[KU16] Daniel Kressner and André Uschmajew. On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems. Linear Algebra Appl., 493:556-572, 2016.
[OR95] Stellan Östlund and Stefan Rommer. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett., 75:3537-3540, Nov 1995.
[Ose11] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295-2317, 2011.
[OT09] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput., 31(5):37443759, 2009.
[Sch08] Erhard Schmidt. On the theory of linear and nonlinear integral equations. III: On the solution of nonlinear integral equations and their bifurcations. Math. Ann., 65:370-399, 1908.
[Sch11] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Ann. Physics, 326(1):96-192, 2011.
[UV20] André Uschmajew and Bart Vandereycken. Geometric methods on low-rank matrix and tensor manifolds. In Handbook of variational methods for nonlinear geometric data, pages 261-313. Cham: Springer, 2020.
[Vid03] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91:147902, Oct 2003.
[Whi92] Steven R White. Density matrix formulation for quantum renormalization groups. Physical review letters, 69(19):2863, 1992.

