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Introduction

These notes are a short introduction to the tensor train decomposition, with a partic-
ular focus on solving linear equations within this format. The tensor train decompo-
sition [OT09] is presented as a generalisation of the singular value decomposition for
matrices, which is central in the characterisation of the low-rank approximation problem.
Approximation results for the tensor train format as well as the tensor train manifold are
discussed.

The second part deals with the numerical resolution of linear systems or eigenvalue
problems. The historical algorithm is an alternating scheme, known as the density matrix
renormalisation group (DMRG) [Whi92, HRS12a], using the variational formulation of
symmetric linear problems. Another way to solve linear problems is to adapt the classical
iterative methods to the tensor train format [KU16]. Both approaches are presented and
discussed in the present notes.

These notes are inspired by the following texts on the tensor train decomposition [Hac12,
Hac14, Sch11, BSU16, UV20].
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Chapter 1

Tensor trains

1.1 Singular value decomposition and generalisations
for tensors

This chapter is devoted to the tensor train decomposition, as a generalisation of the
singular value decomposition (SVD) for high-dimensional tensors. The SVD arises in the
low-rank approximation of matrices, as such, it is natural to look for generalisation of the
SVD for high-dimensional tensors. As it will be mentioned, the historical tensor formats,
i.e. the CP decomposition and the Tucker decomposition suffer from drawbacks that the
tensor train format does not have.

1.1.1 Tensors and reshapes

A tensor C of order L ∈ N is a multidimensional array Ci1...iL ∈ Rn1×···×nL .
A convenient way to represent tensor and product of tensors is the graphical repre-

sentation. Let C ∈ Rn1×···×nL be a tensor. The graphical representation of C is given by

i1
i2

i3

i4

i5

C

Figure 1.1: Graphical representation of C.
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Each vertex represents a tensor and each edge an index of the tensor.

i2
v

(a) Vector vi2 .

i2 i1
A

(b) Matrix Ai2
i1

.

i1
Av

(c) Matrix-vector product
(Av)i1 =

∑
i2
Ai2

i1
vi2 .

Figure 1.2: Contraction of tensors. Every pair of connected edges is a summation over
the shared index.

Definition 1.1.1 (Reshape of a tensor). Let C ∈ Rn1×···×nL be a tensor. Let (j1, . . . , jℓ, k1, . . . , kn)
be a permutation of {1, . . . , L}. We say that the matrix C

ik1 ...ikn
ij1 ...ijℓ

∈ Rnj1
···njℓ

×nk1
···nkn is a

reshape of C.

The reshapes C
iℓ+1...iL
i1...iℓ

will be of particular interest for tensor trains.

1.1.2 The low-rank approximation for matrices

Theorem 1.1.2. Let A ∈ Rm×n be a matrix. There exist orthogonal matrices U ∈ Rm×rA

and V ∈ Rn×rA, and a diagonal matrix Σ = Diag(s1, . . . , srA) with s1 ≥ · · · ≥ srA > 0
such that A = UΣV T . The triplet of matrices (U,Σ, V T ) satisfying these properties is
called a singular value decomposition (SVD) of A.

An important property of the singular value decomposition is the following.

Theorem 1.1.3 (Best rank r approximation of a matrix [Sch08]). Let A ∈ Rm×n be a
matrix and (U,Σ, V T ) an SVD of A. The best rank-r of A in the Frobenius norm is given
by

Ar = UrΣrV
T
r =

r∑
k=1

skukv
T
k ,

where Ur ∈ Rm×r, Σr ∈ Rr×r and Vr ∈ Rn×r are the respective truncations of U , Σ and
V . The error is given by

∥A− Ar∥F =
( ∑

k≥r+1

s2k

)1/2

. (1.1.1)

The best approximation is unique if sr > sr+1.

Another way to phrase the best rank r approximation of a matrix is to take the
subspace point of view. A matrix A ∈ Rm×n can be viewed as a vector of the product
space Rm⊗Rn which is isometrically isomorphic to Rmn. The subspace problem is phrased
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as follows: find subspaces U ⊂ Rm and V ⊂ Rn both of dimension r such that it minimises
the distance

dist(A,U ⊗ V) = ∥A− ΠU⊗VA∥ = min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥, (1.1.2)

where ΠW is the orthogonal projection onto the subspace W ⊂ Rmn. The SVD of the
matrix (Aj

i ) is also a representation of the vector (Aij)1≤i≤m,1≤j≤n in the orthonormal
basis (ui ⊗ vj)1≤i≤m,1≤j≤n:

A =

rA∑
k=1

skuk ⊗ vk. (1.1.3)

Proposition 1.1.4. Let A ∈ Rm×n, (U,Σ, V T ) its SVD and r ∈ N. Denote (u1, . . . , urA)
and (v1, . . . , vrA) the respective columns of U and V . A solution to the subspace minimi-
sation problem (1.1.2) is given by

U = Span(u1, . . . , ur), V = Span(v1, . . . , vr). (1.1.4)

The solution is unique if sr > sr+1.

Proof. Let Ũ and Ṽ be respectively subspaces of Rm and Rn of dimension r. Let (ũi)1≤i≤r

and (ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . The minimisation problem (1.1.2) can be
rewritten as

min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− ΠŨ⊗ṼA∥ = min
Ũ⊂Rm,dim Ũ=r

Ṽ⊂Rn,dim Ṽ=r

∥A− PŨAPṼ∥2F ,

where PŨ (resp. PṼ) is the orthogonal projection onto Ũ (resp. Ṽ).
Let Ũ and Ṽ be respectively subspaces of Rm and Rn of dimension r. Let (ũi)1≤i≤r

and (ṽi)1≤i≤r be ONB of respectively Ũ and Ṽ . Then we have

∥A− PŨAPṼ∥2F = Tr
(
(A− PŨAPṼ)

T (A− PŨAPṼ)
)

= Tr
(
ATA− PṼA

TPŨA− ATPŨAPṼ + PṼA
TPŨAPṼ

)
= Tr

(
ATA

)
− Tr

(
PṼA

TPŨAPṼ
)
,

where we have used that since PṼ is an orthogonal projection, we have Tr
(
PṼA

TPŨA
)
=

Tr
(
ATPŨAPṼ

)
= Tr

(
PṼA

TPŨAPṼ
)
. We realise that

Tr
(
PṼA

TPŨAPṼ
)
=

∑
1≤i,j≤r

⟨ũi, Aṽj⟩2.

Solving the minimisation problem (1.1.2) is equivalent to maximising
∑

1≤i,j≤r

(
⟨ũi, Aṽj⟩

)2
where (ũi)1≤i≤r and (ṽi)1≤i≤r are orthonormal families. Using the SVD of A, the previous
quantity is maximised for Ũ = Span(u1, . . . , ur) and Ṽ = Span(v1, . . . , vr).
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1.1.3 Generalisations of the SVD for tensors

For higher-order tensors, different schematic generalisations of the SVD are possible. With
the previous discussion, there are two natural options that emerge:

• write the tensor as a sum of rank-1 tensors:

C =
r∑

k=1

u
(1)
k ⊗ · · · ⊗ u

(L)
k ,

where u
(j)
k ∈ Rnj . This is the canonical polyadic decomposition (CP decomposition);

• consider the subspace minimisation problem:

dist(C,U1 ⊗ U2 ⊗ · · · ⊗ UL) = min
Ũ1⊂Rn1 ,dim Ũ1=r1,...,ŨL⊂RnL ,dim ŨL=rL

∥C − ΠŨ1⊗···⊗ŨL
C∥,

where dimUk = rk for all 1 ≤ k ≤ L. This yields the Tucker decomposition.

The canonical decomposition looks the most appealing as it is the most sparse way
to represent a tensor. It has however one major drawback, being that the best rank
r approximation (in the sense of the CP decomposition) is ill-posed! [DSL08] Consider
noncolinear vectors a ∈ Rn, b ∈ Rn and the tensor

C = b⊗ a⊗ a+ a⊗ b⊗ a+ a⊗ a⊗ b.

which is a tensor of canonical rank 3. It can however be approximated as well as we wish
by a tensor of canonical rank 2: let ε > 0, then we see that

C −
(1
ε
(a+ εb)⊗ (a+ εb)⊗ (a+ εb)− 1

ε
a⊗ a⊗ a

)
= O(ε). (1.1.5)

Contrary to matrices, the set of tensors of canonical rank less than r is not closed.
Regarding the Tucker decomposition, let C ∈ U1 ⊗ · · · ⊗ UL. Then there is a core

tensor S ∈ Rr1×···×rL and matrices (Uk)1≤k≤L ∈
⊗L

k=1Rnk×rk such that

∀ 1 ≤ ik ≤ nk, Ci1...iL =

r1∑
j1=1

· · ·
rL∑

jL=1

Sj1...jL(U1)
j1
i1
· · · (UL)

jL
iL
.

The storage cost of the tensor C is still exponential in the order L of the tensor (except
if some rk are equal to 1). As such it is a useful decomposition only for low order tensors.
In the following, we will focus on the efficient representation of tensors of order up to a
hundred, for which the Tucker decomposition is not suited.
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S

U1

i1

U3

i3

U2

i2
U4

i4

(a) Tucker decomposition

A1 A2 A3 AL−2 AL−1 AL

i1 i2 i3 iL−2 iL−1 iL

(b) Tensor train decomposition

Figure 1.3: Tucker and tensor train decompositions

1.2 Tensor train decomposition

1.2.1 Definition

The tensor train (TT) decomposition [OT09], also called matrix product state [KSZ91] in
the physics litterature is the simplest instance of a tensor network. The TT decomposition
is related to the density-matrix renormalisation group (DMRG) [Whi92] pioneered by
White for the computation of properties of one-dimensional statistical physics systems.
The connection between DMRG and TT has been realised later [OR95, DMNS98].

Definition 1.2.1 ([KSZ91, OT09]). Let C ∈ Rn1×···×nL be a tensor. We say that (A1, . . . , AL)
is a tensor train decomposition of C if we have for all 1 ≤ ik ≤ nk

Ci1...iL = A1[i1]A2[i2] · · ·AL[iL] (1.2.1)

=

r1∑
α1=1

r2∑
α2=1

· · ·
rL−1∑

αL−1=1

A1[i1]α1A2[i2]
α1
α2
· · ·AL[iL]

αL−1 , (1.2.2)

where for each 1 ≤ ik ≤ nk, Ak[ik] ∈ Rrk−1×rk (r0 = rL = 1). The tensor Ak are called
the TT cores and the sizes of the TT cores are the TT ranks of C.

Such a representation has a storage cost of
∑L

k=1 nkrk−1rk. Provided that the TT
ranks do not increase exponentially with the order L of the tensor, the TT decomposition
is a sparse representation of the tensor C. As it will be highlighted later, an exact TT
representation of any tensor C can be derived using the hierarchical SVD. Generically,
the TT ranks of the tensor will be exponential in L, however, good approximations for
problems can be achieved for problems with some notion of sparsity [Has07, DDGS16].

Example 1.2.2. • a tensor product Ci1...iL = u
(1)
i1
· · ·u(L)

iL
is a TT of TT rank 1, as

the cores are (u
(k)
ik
)1≤k≤L,1≤ik≤nk

.
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A1[i1] ∈ R1×r1

A1[1]

A1[2]

A2[i2] ∈ Rr1×r2

A2[1]

A2[2]

. . .

AL−1[iL−1] ∈ RrL−2×rL−1

AL−1[1]

AL−1[2]

AL[iL] ∈ RrL−1×1

AL[1]

AL[2]

Figure 1.4: Schematic representation of the TT decomposition

• the unnormalised Bell state B ∈⊗2L
1 R2

Bi1...i2L =
(
δ1,i1δ2,i2 + δ2,i1δ1,i2

)(
δ1,i3δ2,i4 + δ2,i3δ1,i4

)
· · ·(
δ1,i2L−1

δ2,i2L + δ2,i2L−1
δ1,i2L

)
,

is a TT of rank 2: let (Bk)1≤k≤2L be defined by

B2k−1[i2k−1] =
[
δ1i2k−1

δ2i2k−1

]
, B2k[i2k] =

[
δ2i2k
δ1i2k

]
, k = 1, . . . , L.

By a direct calculation, we can check that Bi1...i2L = B1[i1] · · ·B2L[iL].

• for L = 2, the following reordering of the indices of the Bell state B̃ ∈⊗4
1R2

B̃i1...i4 =
(
δ1,i1δ2,i3 + δ2,i1δ1,i3

)(
δ1,i2δ2,i4 + δ2,i3δ1,i4

)
has a TT decomposition of rank 4:

ik B̃1 B̃2 B̃3 B̃4

1
[
1 0

] [
0 0 1 0
0 1 0 0

] 
0 0
0 1
0 0
1 0

 [
1
0

]

2
[
0 1

] [
1 0 0 0
0 0 0 1

] 
1 0
0 0
0 1
0 0

 [
0
1

]

This elementary example highlights the importance of the ordering of the indices of
the tensor for an efficient TT representation.
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Remark 1.2.3. The reordered Bell state example B̃ ∈⊗2L
1 R2

B̃i1...i2L =
L∏

k=1

(
δ1,ikδ2,ik+L

+ δ2,ikδ1,ik+L

)
has a TT decomposition of rank 2L. The optimality of the ranks is proved by the charac-
terisation of the TT ranks stated in Theorem 1.2.7.

It is clear that there is no uniqueness of the TT decomposition. Indeed for a tensor
C ∈ Rn1×···×nL if (A1, . . . , AL) is a tensor train decomposition, then for any invertible
matrices (Gk)1≤k≤L−1 ∈

⊗L−1
k=1 GLrk(R), the TT cores (Ã1, . . . , ÃL) defined by{

Ã1[i1] = A1[i1]G1, i1 = 1, . . . , n1, ÃL[iL] = G−1
L−1AL[iL], iL = 1, . . . , nL

Ãk[ik] = G−1
k−1Ak[ik]Gk, ik = 1, . . . , nk, k = 2, . . . , L− 1,

is an equivalent TT representation.
As we are going to see later on, it is possible to partially lift this gauge freedom by

imposing additional properties on the TT cores (Ak).

Proposition 1.2.4 (Algebraic properties of TT). Let (A1, . . . , AL)and (Ã1, . . . , ÃL) be
the respective TT decompositions of the tensors C, C̃ ∈ Rn1×···×nL. Then

B1[i1] =
(
A1[i1] Ã1[i1]

)
, BL[iL] =

[
AL[iL]

ÃL[iL]

]
Bk[ik] =

[
Ak[ik] 0

0 Ãk[ik]

]
, k = 2, . . . , L− 1

(1.2.3)

is a TT decomposition of the sum C + C̃.

The proof consists in expanding the TT decomposition (B1, . . . , BL). The TT de-
composition (1.2.3) is in general not minimal and can be compressed as explained in
Section 1.3.

Remark 1.2.5. Since a tensor product u(1) ⊗ · · · ⊗ u(L) is a TT of rank 1, we deduce
that a CP decomposition of rank r has at most a TT representation of rank r. The
TT decomposition is a generalisation of the CP format, with advantageous algebraic and
topologic properties.
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1.2.2 The hierarchical SVD

The hierarchical SVD (HSVD) is an algorithm [Vid03, OT09] to obtain a tensor train
representation of any tensor. In the HSVD, we apply successive SVD to C ∈ Rn1×···×nL :

Ci1...iL = (Ci2...iL
i1

) (reshape of C to n1 × n2 · · ·nL)

=
(
U1

)α1

i1

(
Σ1V1

)i2...iL
α1

(SVD)

=
(
U1

)α1

i1

(
Σ1V1

)i3...iL
α1i2

(reshape of Σ1V1)

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V2

)i3...iL
α2

(SVD of Σ1V1)

=
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σ2V2

)i4...iL
α2i3

(reshape of Σ2V2),

we repeat the process until we get

Ci1...iL =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
ΣL−1VL−1

)iL
αL−1

.

The identification with the TT decomposition is clear, one simply needs to be careful with
the switch in the role played by the virtual indices:

Ci1...iL =
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
ΣL−1VL−1

)iL
αL−1

= A1[i1]α1 A2[i2]
α1
α2
· · · AL−1[iL−1]

αL−2
αL−1

AL[iL]
αL−1 .

There are a few immediate remarks:

(i). it is possible to start at the end, i.e. by first reshaping C into the matrix CiL
i1...iL−1

∈
Rn1···nL−1×nL , perform its SVD and carry on. Another TT representation is obtained
this way;

(ii). from the HSVD algorithm, we guess that the singular values Σk are related to the
singular values of the reshapes Cik+1...iL

i1...ik
∈ Rn1···nk×nk+1···nL and that they play a key

role in the best approximation by a TT at fixed TT ranks. This is indeed the case
and it will be treated in Section 1.3.

This algorithm is central in the theory of TT and more generally in the approximation
theory by tensor networks. It is somewhat clear that such an algorithm extends to the
decomposition into a tree tensor network. Indeed, in the HSVD algorithm, we simply
partition {1, . . . , L} into the sets ({1}, {2, . . . , L}), then ({1}, {2}, {3, . . . , L}), and so on
so forth. For trees, we choose different partition choices that does not have to reduce to a
singleton right away. For tensor networks with loops, there is no equivalent of the HSVD
for the construction of a tensor network directly from the tensor. This makes the analysis
of such networks much more difficult.
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1.2.3 Normalisation and gauge freedom

Definition 1.2.6. We say that a TT decomposition (A1, . . . , AL) is

• left-orthogonal if for all 1 ≤ k ≤ L− 1 we have

nk∑
ik=1

Ak[ik]
∗Ak[ik] = idrk ; (1.2.4)

• right-orthogonal if for all 2 ≤ k ≤ L we have

nk∑
ik=1

Ak[ik]Ak[ik]
∗ = idrk−1

. (1.2.5)

From the HSVD algorithm, we see that we obtain a left-orthogonal TT decomposi-
tion of the tensor C. By starting from the end, we would get a right-orthogonal TT
representation of C.

Such a normalisation turns out to be convenient for the computation of the norm a
tensor. Suppose that (A1, . . . , AL) is a left-orthogonal TT decomposition. The norm of
the corresponding tensor C remarkably simplifies

∥C∥2F =

n1∑
i1=1

· · ·
nL∑

iL=1

(
A1[i1] · · ·AL[iL]

)2
=

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
T · · ·A1[i1]

TA1[i1] · · ·AL[iL]

=

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
T · · ·A1[i1]

TA1[i1] · · ·AL[iL]

=

n2∑
i2=1

· · ·
nL∑

iL=1

AL[iL]
T · · ·

( n1∑
i1=1

A1[i1]
TA1[i1]

)
· · ·AL[iL]

=

n2∑
i2=1

· · ·
nL∑

iL=1

AL[iL]
T · · ·A2[i2]

TA2[i2] · · ·AL[iL],

where the left-orthogonality of A1 has been used. Hence by iterating this argument, the
norm of C is simply the norm of the last TT core AL.

Another instance where the choice of the normalisation is crucial is in solving eigen-
value problems in DMRG (see Chapter 2).

It is also possible to mix both normalisations, in the sense that for some 2 ≤ n ≤ L−1,
we have



16 CHAPTER 1. TENSOR TRAINS

• the first n− 1 TT cores are left-orthogonal: for 1 ≤ k ≤ n− 1
nk∑

ik=1

Ak[ik]
TAk[ik] = idrk ;

• the last L− n+ 1 TT cores are right-orthogonal: for n+ 1 ≤ k ≤ L
nk∑

ik=1

Ak[ik]Ak[ik]
T = idrk−1

. (1.2.6)

In that case, the norm of the tensor is carried by the TT core that is not normalised,
using the following trick:

∥C∥2F =

n1∑
i1=1

· · ·
nL∑

iL=1

AL[iL]
T · · ·A1[i1]

TA1[i1] · · ·AL[iL]

=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
AL[iL]

T · · ·A1[i1]
TA1[i1] · · ·AL[iL]

)
=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
Ak+1[ik+1] · · ·AL[iL]AL[iL]

T · · ·A1[i1]
TA1[i1] · · ·Ak[ik]

)
=

nk∑
ik=1

Tr
(
Ak[ik]

TAk[ik]).

Conversion between left and right orthogonal TT representations

By successive LQ decompositions, it is possible to transform a left-orthogonal to a right
orthogonal TT decomposition. Let (A1, . . . , AL) be a left-orthogonal TT decomposition
of C ∈ Rn1×···×nL . Then we have

Ci1...iL = A1[i1] · · ·AL[iL]

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−1[iL−1]

αL−1
αL−2

(
AL

)iL
αL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−1[iL−1]

αL−1
αL−2

(
LL

)βL−1

αL−1

(
QL

)iL
βL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−2[iL−2]

αL−2
αL−3

(
AL−1LL

)iL−1βL−1

αL−2

(
QL

)iL
βL−1

= A1[i1]
α1A2[i2]

α2
α1
· · ·AL−2[iL−2]

αL−2
αL−3

(
LL−1

)βL−2

αL−2

(
QL−1

)iL−1βL−1

βL−2

(
QL

)iL
βL−1

,

we repeat this process until we reach

Ci1...iL = (A1L2)
i1β1

(
Q2

)i2β2

β1
· · ·

(
QL−1

)iL−1βL−1

βL−2

(
QL

)iL
βL−1

= B1[i1]β1 B2[i2]
β1

β2
· · · BL−1[iL−1]

βL−2

βL−1
BL[iL]

βL−1 .
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We simply need to check that the TT cores B2, . . . , BL are right-orthogonal:
nk∑

ik=1

Bk[ik]Bk[ik]
∗ = idrk−1

.

Theorem 1.2.7 (Characterisation of the TT ranks [HRS12b]). Let C ∈ Rn1×···×nL be a
tensor. Then the following assertions are true:

(i). the HSVD algorithm given in Section 1.2.2 gives a TT decomposition of minimal
TT rank;

(ii). the minimal TT rank (r1, . . . , rL−1) is equal to the rank of the reshapes of C, i.e.

rk = RankC
ik+1...iL
i1...ik

. (1.2.7)

Proof. Let (A1, . . . , AL) be the TT cores given by the HSVD algorithm. The proof of
item (ii) follows from the following identity

C
ik+1...iL
i1...ik

=
(
A1[i1]A2[i2] · · ·Ak[ik]

)(
Ak+1[ik+1] · · · AL[iL]

)
,

where
(
A1[i1]A2[i2] · · ·Ak[ik]

)
∈ Rn1···nk×rk and

(
Ak+1[ik+1] · · · AL[iL]

)
∈ Rrk×nk+1···nL .

By construction and by the property of the SVD, both matrices are full rank, hence
rk = RankC

ik+1...iL
i1...ik

.

These normalisations have the advantage of reducing the gauge freedom in the TT
representation.

Proposition 1.2.8 (Gauge freedom of left-orthogonal TT decompositions [HRS12b]). A
left-orthogonal TT representation of minimal TT rank (r1, . . . , rL−1) is unique up to the
insertion of orthogonal matrices, i.e. if (A1, . . . , AL) and (B1, . . . , BL) are left-orthogonal
TT representations of the same tensor C, then there are orthogonal matrices (Qk)1≤k≤L−1,
Qk ∈ Rrk×rk such that for all 1 ≤ ik ≤ nk we have

A1[i1]Q1 = B1[i1], Q∗
L−1AL[iL] = BL[iL]

Q∗
k−1Ak[ik]Qk = Bk[ik], for k = 2, . . . , L− 1.

(1.2.8)

Proof. The proof relies on the following observation: let M1, N1 ∈ Rp×r and M2, N2 ∈ Rr×q

be matrices of rank r such that

M1M2 = N1N2 and M∗
1M1 = N∗

1N1 = idr,

there is an orthogonal matrix Q ∈ Rr×r such that

M1 = N1Q and M2 = Q∗N2.



18 CHAPTER 1. TENSOR TRAINS

The proof of this lemma is straightforward:

N2 = N∗
1M1M2 = N∗

1M1M
∗
1N1N2,

which shows that N∗
1M1 is an orthogonal matrix. Denote this matrix Q. Hence N2 = QM2

and M1N
∗
1N1 = M1 thus, N1 = M1Q

∗.
The proof then goes by iteration. We have(

A1[i1]
)(
A2[i2] · · ·AL[iL]

)
=

(
B1[i1]

)(
B2[i2] · · ·BL[iL]

)
n1∑

i1=1

A1[i1]
∗A1[i1] =

n1∑
i1=1

B1[i1]
∗B1[i1] = idr1 .

Since
(
A1[i1]

)
,
(
A2[i2] · · ·AL[iL]

)
,
(
B1[i1]

)
and

(
B2[i2] · · ·BL[iL]

)
have rank r1, by the

lemma there is an orthogonal matrix Q1 ∈ Rr1×r1 such that

A1[i1]Q1 = B1[i1]

Q∗
1

(
A2[i2] · · ·AL[iL]

)
=

(
B2[i2] · · ·BL[iL]

)
.

For the next iteration, we have(
Q∗

1A2[i2]
)(
A3[i3] · · ·AL[iL]

)
=

(
B2[i2]

)(
B3[i3] · · ·BL[iL]

)
n2∑

i2=1

A2[i2]
∗Q1Q

∗
1A2[i2] =

n2∑
i2=1

B2[i2]
∗B2[i2] = idr1 .

Applying again the lemma, we have

Q∗
1A2[i2]Q2 = B2[i2]

Q∗
2

(
A3[i3] · · ·AL[iL]

)
=

(
B3[i3] · · ·BL[iL]

)
.

By iteration, we prove the proposition.

The Vidal representation

A convenient - albeit numerically unstable - way to convert easily between left-orthogonal
and right-orthogonal TT representations is to use the Vidal representation [Vid03].

Definition 1.2.9 (Vidal representation [Vid03]). Let C ∈ Rn1×···×nL be a tensor. We say
that (Γk)1≤k≤L, (Σk)1≤k≤L−1 is a Vidal representation if Σk are diagonal matrices with
positive entries,

Ci1,...,iL = Γ1[i1]Σ1Γ2[i2]Σ2 · · ·ΣL−1ΓL[iL], (1.2.9)
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and the matrices Γk[ik] ∈ Rrk−1×rk satisfy

n1∑
i1=1

Γ1[i1]
∗Γ1[i1] = idr1 ,

nL∑
iL=1

ΓL[iL]ΓL[iL]
∗ = idrL−1

(1.2.10)

∀ k = 2, . . . , L− 1,

nk∑
ik=1

Γk[ik]
∗Σ2

k−1Γk[ik] = idrk ,

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

∗ = idrk−1
. (1.2.11)

The Vidal representation directly gives left and right orthogonal TT decompositions:

(i). (A1, . . . , AL) left-orthogonal TT representation

A1[i1] = Γ1[i1], AL[iL] = ΣL−1ΓL[iL]

Ak[ik] = Σk−1Γk[ik], k = 2, . . . , L− 1;

(ii). (B1, . . . , BL) right-orthogonal TT representation

B1[i1] = Γ1[i1]Σ1, BL[iL] = ΓL[iL]

Bk[ik] = Γk[ik]Σk, k = 2, . . . , L− 1.

The conversion from left (or right) orthogonal decomposition to a Vidal representation
is more involved [Sch11, Section 4.6]. Let Ak be the TT components of a left-orthogonal
TT representation. Notice that for all k, let Σk be the singular values of the tensor reshape
C

ik+1...id
i1...ik

. Then we have

C
ik+1...iL
i1...ik

=

 A1[1]A2[1] · · ·Ak[1]
...

A1[n1]A2[n2] · · ·Ak[nk]


︸ ︷︷ ︸

=:Mk∈Rn1···nk×rk

[
Ak+1[ik+1] · · · AL[iL]

]︸ ︷︷ ︸
∈Rrk×nk+1...nL

Because Ak are left-orthogonal, then MT
k Mk = idrk , hence the singular values of the

reshaped tensor is exactly the singular values of the right matrix.
With this remark, we can now write the iterative algorithm to get the Vidal represen-

tation of the tensor.
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Algorithm 1 Left-orthogonal to Vidal representation
Input: (A1, . . . , AL) left-orthogonal TT representation
Output: (Γ1, . . . ,ΓL), (Σ1, . . . ,ΣL−1) Vidal representation

function LeftToVidal((A1, ..., AL))
UL−1,ΣL−1, V

T
L = svd

( [
AL[1] AL[2] · · · AL[nL]

] )[
ΓL[1] · · · ΓL[nL]

]
= V T

L

for k = L− 1, . . . , 1 do
Uk−1,Σk−1, V

T
k = svd

( [
Ak[1]UkΣk · · · Ak[nk]UkΣk

] )
.

Γk solution to V T
k =

[
Γk[1]Σk · · · Γk[nk]Σk

]
end for
return (Γ1, . . . ,ΓL), (Σ1, . . . ,ΣL−1).

end function

By induction, one can show that the singular values of the successive SVD in the
previous algorithm are indeed the singular values of the tensor reshape.

Proposition 1.2.10. Let (Γk)1≤k≤L, (Σk)1≤k≤L−1 be a Vidal representation of C ∈ Rn1×···×nL.
Then Σk is the matrix of the singular values of the reshape C

ik+1...iL
i1...ik

∈ Rn1···nk×nk+1···nL.

Proof. By definition of the SVD, the Vidal TT components Γk satisfy

nk∑
ik=1

Γk[ik]Σ
2
kΓk[ik]

T = idrk−1
.

We also have[
Ak[1]Uk · · ·Ak[nk]Uk

]
=

[
Uk−1Σk−1Γk[1] · · · Uk−1Σk−1Γk[nk]

]
.

Thus

nk∑
ik

Γk[ik]
TΣ2

k−1Γk[ik] =

nk∑
ik

Γk[ik]
TΣk−1U

T
k−1Uk−1Σk−1Γk[ik]

=

nk∑
ik

UT
k Ak[ik]

TAk[ik]Uk

= idrk .
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1.3 Approximation by tensor trains
A natural way to reduce the TT ranks of the TT representation of a tensor is to truncate
the SVD at each step of the HSVD algorithm to a tolerance ε:

Ci1...iL = Ci2...iL
i1

(reshape of C to n1 × n2 · · ·nL)

≃
(
U1

)α1

i1

(
Σε

1V
T
1

)i2...iL
α1

(truncated SVD)

≃
(
U1

)α1

i1

(
Σε

1V
T
1

)i3...iL
α1i2

(reshape of Σε
1V

T
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
T
2

)i3...iL
α2

(truncated SVD of Σε
1V

T
1 )

≃
(
U1

)α1

i1

(
U2

)α2

α1i2

(
Σε

2V
T
2

)i4...iL
α2i3

(reshape of Σε
2V

T
2 ),

we repeat the process until we get

Ci1...iL ≃
(
U1

)α1

i1

(
U2

)α2

α1i2
· · ·

(
UL−1

)αL−1

αL−2iL−1

(
Σε

L−1VL−1

)iL
αL−1

.

This algorithm is often called a TT rounding [Ose11] or TT compression. Truncating the
successive SVDs gives an estimate on the best approximation by a tensor train of fixed
TT ranks.

Theorem 1.3.1 ([Gra10, Ose11, Hac12, Hac14]). Let C ∈ Rn1×···×nL, (r̃1, . . . , r̃L−1) ∈
NL−1 and Mr̃ be the space of tensor trains of ranks bounded by (r̃1, . . . , r̃L−1). Then we
have

min
V ∈Mr̃

∥C − V ∥ ≤

√√√√L−1∑
k=1

∑
j>r̃k

σ
(k)
j

2 ≤
√
L− 1 min

V ∈Mr̃

∥C − V ∥,

where for 1 ≤ k ≤ L− 1, (σ(k)
j )1≤j≤rk are the singular values of the reshape (Ψµ1...µk

µk+1...µL
).

Proof. The proof of the left-hand side inequality follows from the HSVD algorithm. Let
Πk : Rn1···nk×nk+1···nL → Rn1···nk×nk+1···nL be the SVD truncation of rank r̃k. This operator is
an orthogonal projection in the Hilbert space Rn1···nk×nk+1···nL equipped with the Frobenius
norm. The HSVD algorithm with truncation at each step is the tensor ΠL−1 · · ·Π1C. We
thus have using the property of the SVD truncation:

∥C − ΠL−1 · · ·Π1C∥2F ≤ ∥Π⊥
L−1C∥2 + ∥ΠL−1C − ΠL−1 · · ·Π1C∥2F

≤
∑
j>r̃k

σ
(k)
j

2
+ ∥C − ΠL−2 · · ·Π1C∥2F ,

hence by iteration

∥C − ΠL−1 · · ·Π1C∥2F ≤
L−1∑
k=1

∑
j>r̃k

σ
(k)
j

2
.
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This provides a bound on the best approximation by a tensor train inMr̃.
For the lower bound on the best approximation Cbest, we have for each k by definition

of the SVD truncation

∥C − ΠkC∥2F =
∑
j>r̃k

σ
(k)
j

2 ≤ ∥C − Cbest∥2F ,

hence by summing over k we get the lower bound.

A drawback of the HSVD algorithm or its truncated version is that it requires to
handle the full tensor. If the tensor is already in a TT format, it is possible to reduce the
cost of this truncation. Let (A1, . . . , AL) be a right-orthogonal TT representation of the
tensor C ∈ Rn1×···×nL . The first reshape is

Ci2...iL
i1

=

 A1[1]
...

A1[n1]

 [
A2[1] · · ·AL[1] · · · A2[n2] · · ·AL[nL]

]
,

and since the TT cores (A2, . . . , AL) are right-orthogonal, the matrix
V2 =

[
A2[1] · · ·AL[1] · · · A2[n2] · · ·AL[nk]

]
satisfies V2V

∗
2 = idr1 . Hence the first step

of the HSVD truncation can be reduced to the SVD of the reshape of A1. The same
would hold for the next step of the HSVD truncation, hence the total cost of the TT
compression of C in a TT format is reduced to O(Lr3) where r = max(rk).

The algorithm is summarised in Algorithm 2.

1.4 Manifold of tensor trains

Even in finite-dimensions, the example exhibited in eq. (1.1.5) shows that the set

MCP≤r
=

{
C =

r∑
i=1

v
(i)
1 ⊗ · · · ⊗ v

(i)
L ,∀ 1 ≤ i ≤ r, 1 ≤ j ≤ L, v

(i)
j ∈ Rnj

}
,

is not closed if L ≥ 3.
For tensor trains, the question of the closedness has a clear answer, as the characteri-

sation of the TT rank relies on the matricisation of the tensor.

Proposition 1.4.1. The set of tensor trains with TT rank less that r

MTT≤r
=

{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Rrk−1×rk , rk ≤ r

}
,

is a closed set.
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Algorithm 2 TT rounding algorithm
Input: (A1, . . . , AL) right-orthogonal TT representation, ε > 0 tolerance
Output: (Aε

1, . . . , A
ε
L) TT representation such that ∥TT(Aε

i )− TT(Ai)∥F ≤
√
L− 1 ε

function HSVD((A1, . . . , AL), ε)
for k = 1, . . . , L− 1 do

Uk,Σk, V
T
k = svd

( Ak[1]
...

Ak[nk]

)
rk = argmax

r
∥Σk[1 : r]− Σk∥ ≤ ε

(Aε
k)

αk
ikαk−1

= (Uk)
αk
ikαk−1

, ik = 1, . . . , nk, αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk
Ak+1[ik+1] = Σk[1 : r]V T

k [1 : r, :]Ak+1[ik+1], ik+1 = 1, . . . , nk+1

end for
Aε

L = AL

return (Aε
1, . . . , A

ε
L)

end function

Proof. The proof follows from the characterisation of the TT ranks given by Theo-
rem 1.2.7: given a tensor C, for 1 ≤ k ≤ L − 1, the minimal TT rank rk is equal to
the rank of the matrix C

ik+1...iL
i1...ik

. We conclude by recalling that the set of matrices with
rank less than r is a closed set.

Proposition 1.4.2. The set of tensor trains with TT rank r = (r1, . . . , rL−1)

MTTr =
{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Rrk−1×rk

}
,

is of dimension

dimMTTr =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i . (1.4.1)

Proof. Two TT representations (A1, . . . , AL) and (Ã1, . . . , ÃL) of a same tensor are related
by a gauge (G1, . . . , GL−1) ∈ GLr1(R)× · · ·GLrL−1

(R)

∀ 1 ≤ ik ≤ nk, Ak[ik] = Gk−1Ãk[ik]Gk, k = 1, . . . , L, (G0 = GL = 1).

The dimension of GLrk(R) is r2k, hence the dimension ofMTTr is

dimMTTr =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i .
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Proposition 1.4.3 (Tangent space ofMTTr [HRS12b]). Let A ∈MTTr and (A1, . . . , AL)
be a left-orthogonal TT representation of A. Let δA ∈ TAMTTr.

There are unique components (Wk)1≤k≤L ∈
⊗L

k=1Rrk−1×nk×rk such that

δA =
L∑

k=1

δA(k), (1.4.2)

with
δA

(k)
i1...iL

= A1[i1] · · ·Ak−1[ik−1]Wk[ik]Ak+1[ik+1] · · ·AL[iL], (1.4.3)

and where for k = 1, . . . , L− 1 we have

nk∑
ik=1

Ak[ik]
TWk[ik] = 0rk×rk . (1.4.4)

Proof. By definition of the tangent space TAMTTr , the tangent vectors are given by the
derivatives Γ̇ of the differentiable curves Γ : R→MTTr such that Γ(0) = A.

For all t ∈ R, since Γ(t) ∈ MTTr , we can choose a left-orthogonal TT representation
of Γ(t) such that

Γ(t)i1...iL = Γ
(t)
1 [i1] · · ·Γ(t)

L [iL],

where for all 1 ≤ k ≤ L, t 7→ Γ
(t)
k ∈ Rnk×rk−1×rk is differentiable and Γ

(0)
k = Ak.

Since for 1 ≤ k ≤ L−1,
∑nk

ik=1 Γ
(t)
k [ik]

TΓ
(t)
k [ik] = idrk , there is a differentiable function

t 7→ Uk(t) ∈ Onkrk−1
(R) such that Γ

(t)
k [1]
...

Γ
(t)
k [nk]

 = Uk(t)

 Ak[1]
...

Ak[nk]

 .

This implies that

 Γ̇
(0)
k [1]
...

Γ̇
(0)
k [nk]

 = Sk

 Ak[1]
...

Ak[nk]

 for some antisymmetric matrix Sk ∈ Rnkrk−1×nkrk−1 .

Let  Wk[1]
...

Wk[nk]

 = Sk

 Ak[1]
...

Ak[nk]

 .

Then
nk∑

ik=1

Ak[ik]
TWk[ik] =

[
Ak[1]

T . . . Ak[nk]
T
]
Sk

 Ak[1]
...

Ak[nk]

 ,
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which is a symmetric and an antisymmetric matrix, hence it is zero.
The tangent vectors are hence necessarily of the form given by eq. (1.4.2)-(1.4.4). By

dimension counting and invoking Proposition 1.4.2 shows the uniqueness of the represen-
tation.
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Chapter 2

DMRG

Density matrix renormalisation group [Whi92] (DMRG) is an alternating scheme to solve
linear problems or eigenvalue problems in the tensor train format. In the mathematical
community, it is also referred to the alternating linear scheme (ALS) in its simplest version
or to the modified ALS (MALS) [HRS12a], which is the equivalent to the two-site DMRG.
In DMRG, given a symmetric matrix H ∈ Rn1···nL×n1···nL , we want to solve for x ∈ Rn1···nL

the linear problem
Hx = b, (2.0.1)

for a given b ∈ Rn1···nL , or for (λ, x) ∈ R× Rn1···nL the lowest eigenvalue problem

Hx = λx. (2.0.2)

For both problems, a tensor train representation of the operator H is needed in order to
efficiently implement the DMRG algorithm.

2.1 Tensor train operators

2.1.1 Definition and graphical representation

Definition 2.1.1 (Tensor train operator). Let H ∈ Rn1···nL×n1···nL be a matrix. A ten-
sor train operator (TTO) representation of the matrix is any tuple of order 4 tensors
(H1, . . . , HL), Hk ∈ Rnk×nk×Rk−1×Rk (R0 = RL = 1) such that

Hj1...jL
i1...iL

= H1[i1, j1] · · ·HL[iL, jL],∀ ik, jk = 1, . . . , nk.

The diagrammatic representation of a TTO is similar to the diagrammatic of a TT as
illustrated in Figure 2.1.

A TTO representation of a matrix can be obtained by reordering the indices of the
matrix H and performing a TT-SVD of the resulting tensor. More precisely, by defining

27
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j1 j2 j3 j4

H1

H2 H3
H4

i1 i2 i3 i4

Figure 2.1: Diagrammatic representation of a TTO

the tensor H̃ ∈ Rn2
1×···×n2

L

H̃i1j1;...;iLjL = Hj1...jL
i1...iL

,

we realise that a TTO representation is simply a TT representation of H̃.

Proposition 2.1.2. Let H ∈ Rn1···nL×n1···nL be a symmetric matrix. Then there is a TTO
representation of H such that

∀ 1 ≤ ik, jk ≤ nk, Hk[ik, jk] = Hk[jk, ik], k = 1, . . . , L. (2.1.1)

Proof.

Example 2.1.3. Let us consider the following matrix H ∈ RnL×nL

H = h⊗ id⊗ · · · ⊗ id+ · · ·+ id⊗ id⊗ · · · ⊗ h, (2.1.2)

where h ∈ Rn×n is a symmetric matrix and id is the identity in Rn×n. The matrix
h ⊗ id⊗ · · · ⊗ id is in fact a TTO of rank 1. A naïve application of Proposition 2.1.4
yields a TTO representation of H of rank L. However it is possible to achieve a rank 2
representation with the following construction

H1[i1, j1] =
(
hi1j1 δi1j1

)
, HL[iL, jL] =

(
δiLjL
hiLjL

)
Hk[ik, jk] =

(
δikjk 0
hikjk δikjk

)
, k = 2, . . . , L− 1.

(2.1.3)

Note that this representation also satisfies the property stated in Proposition 2.1.2.

2.1.2 Algebraic properties

Like the TT representation of vectors, the TTO format has some algebraic stability prop-
erty.

Proposition 2.1.4. Let G,H ∈ Rn1···nL×n1···nL be matrices and (G1, . . . , GL), Gk ∈
Rnk×nk×RG

k−1×RG
k and (H1, . . . , HL), Hk ∈ Rnk×nk×RH

k−1×RH
k be respectively TTO represen-

tations of G and H. Let A,B ∈ Rn1···nL be vectors with respcetive TT representations
(A1, . . . , AL), Ak ∈ Rnk×rAk−1×rAk , (B1, . . . , BL), Bk ∈ Rnk×rBk−1×rBk . Then
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(i). the sum G+H has a TTO representation (S1, . . . , SL) given by

S1[i1, j1] =
(
G1[i1, j1] H1[i1, j1]

)
, SL[iL, jL] =

(
GL[iL, jL]
HL[iL, jL]

)
Sk[ik, jk] =

(
Gk[ik, jk] 0

0 Hk[ik, jk]

)
, k = 2, . . . , L− 1

(2.1.4)

(ii). the matrix-vector product C = HA has a TT representation (C1, . . . , CL) with
Ck[jk] ∈ RRH

k−1r
A
k−1×RH

k rAk

Ck[ik] =

nk∑
jk=1

Hk[ik, jk]⊗ Ak[jk], k = 1, . . . , L. (2.1.5)

(iii). the product GH has a TTO representation (P1, . . . , PL) given by

Pk[ik, jk] =

nk∑
ℓk=1

Gk[ik, ℓk]⊗Hk[ℓk, jk], k = 1, . . . , L. (2.1.6)

Proof. This is a direct computation.

Remark 2.1.5. The TTO representations of the sum and the product of the operators are
not optimal. This is clear in the case of the sum G+H when we consider G = H. A TT
rounding step is required in order to reduce the TTO ranks of the representation. This is
not innocuous as essential properties of the matrix can be lost in the rounding procedure
(symmetry for instance).

A diagrammatic proof of the formula for the product of two TTO representations is
given in Figure 2.2, avoiding cumbersome computations.

2.2 The DMRG algorithm
The DMRG algorithm is an algorithm to solve linear systems Hx∗ = b or the lowest
eigenvalue problem Hx∗ = λx∗ using the variational characterisation of the solution to
both problems. As such it is limited in the resolution of linear problems with symmetric
matrices. In the following, we assume that H is a symmetric, positive-definite matrix.

Assumption 2.2.1. The matrix H ∈ Rn1···nL×n1···nL is symmetric and positive-definite.

The solution to the linear system Hx = b is also the minimiser of the functional

x∗ = argmin
x∈Rn1···nL

1

2
⟨x,Hx⟩ − ⟨b, x⟩. (2.2.1)

Using the Rayleigh-Ritz principle, the lowest eigenvalue of H is given by

x∗ = argmin
x∈Rn1···nL

⟨x,Hx⟩
⟨x, x⟩ . (2.2.2)
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j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

(a) Diagrammatic representation of
the product of two TTO

j1 j2 j3 j4

H1

H2 H3
H4

G1

G2 G3
G4

i1 i2 i3 i4

P1 P4

P3P2

(b) Diagrammatic representation of
the product of two TTO

Figure 2.2: Diagrammatic proof of the product of two TTO. The left panel is the di-
agrammatic representation of the product of two TTO. On the right panel, the boxed
tensors Pk are the TTO cores of a TTO representation of the product GH, provided that
the double edges shared between neighbouring Pk are gathered into one edge.

2.2.1 General algorithm

The DMRG algorithm, also known as alternating linear scheme (ALS) [HRS12a], is an
alternating optimisation over the TT manifold. The general idea is to perform a descent
step for each TT core separately. More precisely, the solution to the linear system Hx∗ = b
is approximated on the TT manifold

MTT≤r
=

{
C | ∀ 1 ≤ ik ≤ nk, Ci1...iL = A1[i1] · · ·AL[iL], Ak[ik] ∈ Rrk−1×rk , rk ≤ r

}
.

(2.2.3)
Denoting by j the map J ◦ TT where

TT :

{
Rn1×r0×r1 × · · · × RnL×rL−1×rL → Rn1···nL

(A1, . . . , AL) 7→ (A1[i1] · · ·AL[iL]),

and J(x) = 1
2
⟨x,Hx⟩ − ⟨b, x⟩.

Minimising J over the manifold MTT≤r
is the same as minimising the functional j.

The optimisation steps (2.2.4) and (2.2.5) are called microsteps. An iteration over the
loop n is called a sweep. Notice that at each microstep (2.2.4) or (2.2.5) the left TT cores
are left-orthogonal and the right-TT cores are right-orthogonal.

The microsteps of the DMRG algorithm applied to the linear problem Hx∗ = b are
linear problems involving an operator Pk : Rrk−1×nk×rk → Rn1×···×nL defined by

(PkV )i1...iL = A1[i1] · · ·Ak−1[ik−1]V [ik]Ak+1[ik+1] · · ·AL[iL], (2.2.6)

where (A1, . . . , AL) are TT cores that are left-orthogonal for j ≤ k−1 and right-orthogonal
for j ≥ k + 1. The tensor B

(n+1)
k of the microstep problem (2.2.4) is the solution to the

linear system
P T
k APkB

(n+1)
k = P T

k b. (2.2.7)
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Algorithm 3 DMRG with sweeps

Input: (A
(0)
1 , . . . , A

(0)
L ) in right-orthogonal TT representation

Output: (A
(n)
1 , . . . , A

(n)
L ) ∈MTT≤r

approximation of the minimiser in of J

function DMRG((A(0)
1 , . . . , A

(0)
L ))

n = 0
while not converged do

for k = 1, 2, . . . , L− 1 do ▷ Forward half-sweep

B
(n+ 1

2
)

k = argmin
Vk∈Rrk−1×nk×rk

j(A
(n+ 1

2
)

1 , . . . , A
(n+ 1

2
)

k−1 , Vk, A
(n)
k+1, . . . , A

(n)
L ) (2.2.4)

Q,R = qr(
(
B

(n+ 1
2
)

k

)βk

αk−1ik
) ▷ QR decomposition(

A
(n+ 1

2
)

k [ik]
)αk

αk−1
= Qαk

αk−1ik
▷ Keep Q(

A
(n)
k+1[ik+1]

)αk+1

αk
←

(
RA

(n)
k+1[ik+1]

)αk+1

αk
. ▷ Shift R to the right

end for
for k = d, d− 1, . . . , 2 do ▷ Backward half-sweep

B
(n+1)
k = argmin

Vk∈Rrk−1×nk×rk

j(A
(n+ 1

2
)

1 , . . . , A
(n+ 1

2
)

k−1 , Vk, A
(n+1)
k+1 , . . . , A

(n+1)
L ) (2.2.5)

L,Q = lq
((

B
(n+1)
k

)βkik

αk−1

)
▷ LQ decomposition(

A
(n+1)
k [ik]

)αk

αk−1
=

(
Q
)αkik

αk−1
▷ Keep Q(

A
(n+ 1

2
)

k−1 [ik−1]
)αk−1

αk−2
←

(
A

(n+ 1
2
)

k−1 [ik−1]L
)αk−1

αk−2
▷ Shift L to the left

end for
n = n+ 1

end while
return (A

(n)
1 , . . . , A

(n)
L )

end function
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Proposition 2.2.2. Assume that (A
(n+ 1

2
)

i )1≤i≤k−1 are left-orthogonal and (A
(n)
i )k+1≤i≤L

are right-orthogonal. Then the microstep (2.2.4) has a unique solution.

Proof. It is equivalent to check that eq. (2.2.7) has a unique solution, i.e. that the matrix
P T
k HPk is invertible. As H is symmetric and positive-definite, it is sufficient to prove that

Pk is an injective operator. Let V ∈ Rrk−1×nk×rk such that ∥PkV ∥ = 0. Then we have

∥PkV ∥2 =
n1∑

i1=1

· · ·
nL∑

iL=1

Tr
(
AL[iL]

T · · ·Ak+1[ik+1]
TV [ik]

TAk−1[ik−1]
T · · ·A1[i1]

T

A1[i1] · · ·Ak−1[ik−1]V [ik]Ak+1[ik+1] · · ·AL[iL]
)

=

n1∑
i1=1

· · ·
nL∑

iL=1

Tr
(
V [ik]

TAk−1[ik−1]
T · · ·A1[i1]

TA1[i1] · · ·Ak−1[ik−1]V [ik]

Ak+1[ik+1] · · ·AL[iL]AL[iL]
T · · ·Ak+1[ik+1]

T
)

=

nk∑
ik=1

Tr
(
V [ik]

TV [ik]
)
,

where we have used the cyclicity of the trace and the orthogonality of the TT cores. Hence
PkV = 0 if and only if V = 0.

2.2.2 Implementation details

2.3 Convergence of DMRG
The global convergence of DMRG is a difficult problem, as the TT manifold is not a
convex set. The convergence results on DMRG are local and assume that the Hessian of
the functional j is of full-rank.

Assumption 2.3.1. At the local minimiser A∗, the Hessian j′′ is of full rank

rank j′′(A∗) =
L∑
i=1

ri−1niri −
L−1∑
i=1

r2i , i.e. ker j′′(A∗) = TA∗MTT≤r
. (2.3.1)

2.3.1 Local convergence of DMRG

2.3.2 Half-sweep convergence

2.4 Optimisation on the TT-manifold
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