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Transport equation with constant coefficients

For a given a ∈ R, we consider the following linear transport equation in one dimension :{
∂tū+ a ∂xū = 0 , ∀(x, t) ∈ R× R+

∗ ,

ū(x, 0) = u0(x) , ∀x ∈ R,
(1)

with u0 ∈ L∞(R). Without loss of generality, we assume that a > 0. We refer to the chapter 2, subsection
2.2.1, for the continuous framework of this equation. Here we focus on finding u a discrete approximation of ū
thanks to discrete schemes. As in chapter 3, we introduce a discretization of the domain using a regular mesh :
(xj , tn) = (j∆x, n∆t), ∀j ∈ Z, ∀n ∈ N, where ∆x, respectively ∆t, denotes the space step, respectively the
time step. We also denote un

j the approximation of ū(xj , tn).
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1 Lax-Wendroff scheme

We first focus on the Lax-Wendroff scheme :
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1. Truncation error
The exact solution ū of (1) is generally not a solution of the scheme (2). The truncation error estimates the
difference. Let us assume that the solution of (1) is such that ū ∈ C3(R× R+).
(a) Prove that, for all (x, t) ∈ R× R+, ∂ttū = a2 ∂xxū.
(b) Compute the Taylor expansions (“développements limités avec reste de Taylor-Lagrange”) at a conve-

nient order of ū(xj , tn+1), ū(xj+1, tn), and ū(xj−1, tn) at the point (xj , tn).
(c) Assuming that enough partial derivatives of ū are bounded in L∞ norm by some constant C ∈ R+

∗ ,
prove that the absolute value of the truncation error of the Lax-Wendroff scheme is second order both
in time and space.

2. L∞ stability
(a) Show that, for any non-negative values α, β, γ such that α+ β + γ = 1, then

∀x, y, z ∈ R,min(x, y, z) ≤ αx+ βy + γz ≤ max(x, y, z).

(b) Using (2), find α, β, γ such that un+1
j = αun

j + βun
j+1 + γun

j−1.
(c) Provide a necessary and sufficient condition on ∆t, ∆x and a ensuring the non-negativity of the

coefficients α, β, γ found at the previous question. Deduce the L∞ stability domain of the scheme.

3. L2 stability
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(b) Deduce the condition under which the scheme is L2 stable.



2 Schemes overview

• Centered explicit scheme
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• Centered implicit scheme
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• Upwind scheme 
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• Lax-Friedrichs
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• Beam-Warming (if a > 0)

un+1
j − un

j

∆t
+ a

3un
j − 4un

j−1 + un
j−2

2∆x
− a2∆t

2

un
j − 2un

j−1 + un
j−2

∆x2
= 0. (7)

1. We assume that u0 is a periodic function. Unlike the other schemes, the centered implicit scheme does not
allow, for a given space index j and a given time index n, to express explicitly un+1

j in function of the (un
k )k.

A linear system has to be solved. Construct the matrix of the linear system, prove it is invertible. Show
the L2 stability unconditionally (Hint: compute U tAU).

We sum up in the table below some properties of each scheme :

scheme stability truncation error
Lax-Wendroff L2 stable under CFL |a|∆t ≤ ∆x [L∞ stable if |a|∆t = ∆x] O

(
(∆t)2 + (∆x)2

)
centered explicit unstable O

(
∆t+ (∆x)2

)
centered implicit unconditionally L2 stable O

(
∆t+ (∆x)2

)
upwind L2 and L∞ stable under CFL |a|∆t ≤ ∆x O(∆t+∆x)

Lax-Friedrichs L2 and L∞ stable under CFL |a|∆t ≤ ∆x O

(
∆t+

(∆x)2

∆t

)
Beam-Warming L2 stable under CFL |a|∆t ≤ 2∆x O

(
(∆t)2 + (∆x)2

)
2. Do you see one advantage to use the Beam-Warming scheme?

3. For the following schemes: Lax-Wendroff, upwind, Lax-Friedrichs and Beam-Warming, show that if a∆t =
∆x, the numerical solution un

j is equal to the analytical solution at the discretization point (xj , tn).

4. By using the same tools as the ones used for the Lax-Wendroff scheme in section one, for each scheme of
the table above, check its stability properties and its truncation error.

5. Assuming a > 0, we introduce the third order scheme,

O3 = (1− δ)LW + δBW , δ =
1 + ν

3
(8)

where LW denotes the Lax-Wendroff scheme and BW denotes the Beam-Warming scheme. Check that this
scheme is of order 3 in space and in time.
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