Méthodes numériques pour les EDP instationnaires

TD 1: vendredi 08.09.2023 Transport equation with constant coefficients

For a given $a \in \mathbb{R}$, we consider the following linear transport equation in one dimension :

$$\begin{cases} \partial_t \bar{u} + a \ \partial_x \bar{u} = 0, & \forall (x, t) \in \mathbb{R} \times \mathbb{R}^+_*, \\ \bar{u}(x, 0) = u_0(x), & \forall x \in \mathbb{R}, \end{cases}$$
(1)

with $u_0 \in L^{\infty}(\mathbb{R})$. Without loss of generality, we assume that a > 0. We refer to the chapter 2, subsection 2.2.1, for the continuous framework of this equation. Here we focus on finding u a discrete approximation of \bar{u} thanks to discrete schemes. As in chapter 3, we introduce a discretization of the domain using a regular mesh : $(x_j, t_n) = (j\Delta x, n\Delta t), \ \forall j \in \mathbb{Z}, \ \forall n \in \mathbb{N}$, where Δx , respectively Δt , denotes the space step, respectively the time step. We also denote u_i^n the approximation of $\bar{u}(x_j, t_n)$.

Definition: A scheme is L^{∞} stable if we can prove the estimate

$$\sup_{j} \left| u_{j}^{n+1} \right| \le \sup_{j} \left| u_{j}^{n} \right|.$$

Definition: A scheme is L^2 stable if we can prove the estimate

$$\sum_{j}\left|u_{j}^{n+1}\right|^{2}\leq\sum_{j}\left|u_{j}^{n}\right|^{2}$$

1 Lax-Wendroff scheme

We first focus on the Lax-Wendroff scheme :

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} + \frac{a^2 \Delta t}{2} \; \frac{2u_j^n - u_{j-1}^n - u_{j+1}^n}{\Delta x^2} \; = \; 0 \; . \tag{2}$$

1. Truncation error

The exact solution \bar{u} of (1) is generally not a solution of the scheme (2). The truncation error estimates the difference. Let us assume that the solution of (1) is such that $\bar{u} \in C^3(\mathbb{R} \times \mathbb{R}^+)$.

- (a) Prove that, for all $(x,t) \in \mathbb{R} \times \mathbb{R}^+$, $\partial_{tt} \bar{u} = a^2 \ \partial_{xx} \bar{u}$.
- (b) Compute the Taylor expansions ("développements limités avec reste de Taylor-Lagrange") at a convenient order of $\bar{u}(x_j, t_{n+1})$, $\bar{u}(x_{j+1}, t_n)$, and $\bar{u}(x_{j-1}, t_n)$ at the point (x_j, t_n) .
- (c) Assuming that enough partial derivatives of \bar{u} are bounded in L^{∞} norm by some constant $C \in \mathbb{R}^+_*$, prove that the absolute value of the truncation error of the Lax-Wendroff scheme is second order both in time and space.

2. L^{∞} stability

(a) Show that, for any non-negative values α, β, γ such that $\alpha + \beta + \gamma = 1$, then

$$\forall x, y, z \in \mathbb{R}, \min(x, y, z) \le \alpha x + \beta y + \gamma z \le \max(x, y, z).$$

- (b) Using (2), find α, β, γ such that $u_j^{n+1} = \alpha u_j^n + \beta u_{j+1}^n + \gamma u_{j-1}^n$.
- (c) Provide a necessary and sufficient condition on Δt , Δx and *a* ensuring the non-negativity of the coefficients α, β, γ found at the previous question. Deduce the L^{∞} stability domain of the scheme.

3. L^2 stability

(a) Show that

$$\sum_{j} |u_{j}^{n+1}|^{2} = \sum_{j} |u_{j}^{n}|^{2} - \frac{\nu^{2}(1-\nu^{2})}{4} \sum_{j} |w_{j+1}^{n} - w_{j}^{n}|^{2},$$

where $\nu = \frac{a\Delta t}{\Delta x}$ and $w_j^n = u_j^n - u_{j-1}^n$.

(b) Deduce the condition under which the scheme is L^2 stable.

2 Schemes overview

• Centered explicit scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} \; = \; 0. \tag{3}$$

• Centered implicit scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2\Delta x} \; = \; 0. \tag{4}$$

• Upwind scheme

$$\begin{cases} \frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{u_j^n - u_{j-1}^n}{\Delta x} \; = \; 0 \; , \, \text{if } a > 0, \\ \frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{u_{j+1}^n - u_j^n}{\Delta x} \; = \; 0 \; , \, \text{if } a < 0. \end{cases}$$
(5)

• Lax-Friedrichs

$$\frac{2u_j^{n+1} - u_{j+1}^n - u_{j-1}^n}{2\Delta t} + a \; \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} \; = \; 0. \tag{6}$$

• Beam-Warming (if a > 0)

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \; \frac{3u_j^n - 4u_{j-1}^n + u_{j-2}^n}{2\Delta x} - \frac{a^2 \Delta t}{2} \; \frac{u_j^n - 2u_{j-1}^n + u_{j-2}^n}{\Delta x^2} \; = \; 0. \tag{7}$$

1. We assume that u_0 is a periodic function. Unlike the other schemes, the *centered implicit* scheme does not allow, for a given space index j and a given time index n, to express explicitly u_j^{n+1} in function of the $(u_k^n)_k$. A linear system has to be solved. Construct the matrix of the linear system, prove it is invertible. Show the L^2 stability unconditionally (*Hint:* compute U^tAU).

scheme	stability	truncation error
Lax-Wendroff	L^2 stable under CFL $ a \Delta t \leq \Delta x$ $[L^{\infty}$ stable if $ a \Delta t = \Delta x$]	$O((\Delta t)^2 + (\Delta x)^2)$
centered explicit	unstable	$O(\Delta t + (\Delta x)^2)$
centered implicit	unconditionally L^2 stable	$O(\Delta t + (\Delta x)^2)$
upwind	L^2 and L^{∞} stable under CFL $ a \Delta t \leq \Delta x$	$O(\Delta t + \Delta x)$
Lax-Friedrichs	L^2 and L^{∞} stable under CFL $ a \Delta t \leq \Delta x$	$O\left(\Delta t + \frac{(\Delta x)^2}{\Delta t}\right)$
Beam-Warming	L^2 stable under CFL $ a \Delta t \leq 2\Delta x$	$O((\Delta t)^2 + (\Delta x)^2)$

We sum up in the table below some properties of each scheme :

- 2. Do you see one advantage to use the *Beam-Warming* scheme?
- 3. For the following schemes: Lax-Wendroff, upwind, Lax-Friedrichs and Beam-Warming, show that if $a\Delta t = \Delta x$, the numerical solution u_i^n is equal to the analytical solution at the discretization point (x_j, t_n) .
- 4. By using the same tools as the ones used for the *Lax-Wendroff* scheme in section one, for each scheme of the table above, check its stability properties and its truncation error.
- 5. Assuming a > 0, we introduce the third order scheme,

$$O3 = (1 - \delta)LW + \delta BW \quad , \quad \delta = \frac{1 + \nu}{3} \tag{8}$$

where LW denotes the Lax-Wendroff scheme and BW denotes the Beam-Warming scheme. Check that this scheme is of order 3 in space and in time.