TD 1: vendredi 08.09.2023
Transport equation with constant coefficients

For a given $a \in \mathbb{R}$, we consider the following linear transport equation in one dimension :

$$
\left\{\begin{align*}
\partial_{t} \bar{u}+a \partial_{x} \bar{u} & =0, & \forall(x, t) & \in \mathbb{R} \times \mathbb{R}_{*}^{+}, \tag{1}\\
\bar{u}(x, 0) & =u_{0}(x), & \forall x & \in \mathbb{R},
\end{align*}\right.
$$

with $u_{0} \in L^{\infty}(\mathbb{R})$. Without loss of generality, we assume that $a>0$. We refer to the chapter 2 , subsection 2.2.1, for the continuous framework of this equation. Here we focus on finding u a discrete approximation of \bar{u} thanks to discrete schemes. As in chapter 3, we introduce a discretization of the domain using a regular mesh : $\left(x_{j}, t_{n}\right)=(j \Delta x, n \Delta t), \forall j \in \mathbb{Z}, \forall n \in \mathbb{N}$, where Δx, respectively Δt, denotes the space step, respectively the time step. We also denote u_{j}^{n} the approximation of $\bar{u}\left(x_{j}, t_{n}\right)$.

Definition: A scheme is L^{∞} stable if we can prove the estimate

$$
\sup _{j}\left|u_{j}^{n+1}\right| \leq \sup _{j}\left|u_{j}^{n}\right|
$$

Definition: A scheme is L^{2} stable if we can prove the estimate

$$
\sum_{j}\left|u_{j}^{n+1}\right|^{2} \leq \sum_{j}\left|u_{j}^{n}\right|^{2}
$$

1 Lax-Wendroff scheme

We first focus on the Lax-Wendroff scheme :

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}+\frac{a^{2} \Delta t}{2} \frac{2 u_{j}^{n}-u_{j-1}^{n}-u_{j+1}^{n}}{\Delta x^{2}}=0 . \tag{2}
\end{equation*}
$$

1. Truncation error

The exact solution \bar{u} of (1) is generally not a solution of the scheme (2). The truncation error estimates the difference. Let us assume that the solution of 1 is such that $\bar{u} \in C^{3}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$.
(a) Prove that, for all $(x, t) \in \mathbb{R} \times \mathbb{R}^{+}, \partial_{t t} \bar{u}=a^{2} \partial_{x x} \bar{u}$.
(b) Compute the Taylor expansions ("développements limités avec reste de Taylor-Lagrange") at a convenient order of $\bar{u}\left(x_{j}, t_{n+1}\right), \bar{u}\left(x_{j+1}, t_{n}\right)$, and $\bar{u}\left(x_{j-1}, t_{n}\right)$ at the point $\left(x_{j}, t_{n}\right)$.
(c) Assuming that enough partial derivatives of \bar{u} are bounded in L^{∞} norm by some constant $C \in \mathbb{R}_{*}^{+}$, prove that the absolute value of the truncation error of the Lax-Wendroff scheme is second order both in time and space.
2. L^{∞} stability
(a) Show that, for any non-negative values α, β, γ such that $\alpha+\beta+\gamma=1$, then

$$
\forall x, y, z \in \mathbb{R}, \min (x, y, z) \leq \alpha x+\beta y+\gamma z \leq \max (x, y, z)
$$

(b) Using 22, find α, β, γ such that $u_{j}^{n+1}=\alpha u_{j}^{n}+\beta u_{j+1}^{n}+\gamma u_{j-1}^{n}$.
(c) Provide a necessary and sufficient condition on $\Delta t, \Delta x$ and a ensuring the non-negativity of the coefficients α, β, γ found at the previous question. Deduce the L^{∞} stability domain of the scheme.
3. L^{2} stability
(a) Show that

$$
\sum_{j}\left|u_{j}^{n+1}\right|^{2}=\sum_{j}\left|u_{j}^{n}\right|^{2}-\frac{\nu^{2}\left(1-\nu^{2}\right)}{4} \sum_{j}\left|w_{j+1}^{n}-w_{j}^{n}\right|^{2}
$$

where $\nu=\frac{a \Delta t}{\Delta x}$ and $w_{j}^{n}=u_{j}^{n}-u_{j-1}^{n}$.
(b) Deduce the condition under which the scheme is L^{2} stable.

2 Schemes overview

- Centered explicit scheme

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}=0 \tag{3}
\end{equation*}
$$

- Centered implicit scheme

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2 \Delta x}=0 \tag{4}
\end{equation*}
$$

- Upwind scheme

$$
\left\{\begin{array}{l}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x}=0, \text { if } a>0 \tag{5}\\
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x}=0, \text { if } a<0
\end{array}\right.
$$

- Lax-Friedrichs

$$
\begin{equation*}
\frac{2 u_{j}^{n+1}-u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta t}+a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}=0 . \tag{6}
\end{equation*}
$$

- Beam-Warming (if $a>0$)

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{3 u_{j}^{n}-4 u_{j-1}^{n}+u_{j-2}^{n}}{2 \Delta x}-\frac{a^{2} \Delta t}{2} \frac{u_{j}^{n}-2 u_{j-1}^{n}+u_{j-2}^{n}}{\Delta x^{2}}=0 . \tag{7}
\end{equation*}
$$

1. We assume that u_{0} is a periodic function. Unlike the other schemes, the centered implicit scheme does not allow, for a given space index j and a given time index n, to express explicitly u_{j}^{n+1} in function of the $\left(u_{k}^{n}\right)_{k}$. A linear system has to be solved. Construct the matrix of the linear system, prove it is invertible. Show the L^{2} stability unconditionally (Hint: compute $U^{t} A U$).
We sum up in the table below some properties of each scheme :

scheme	stability	truncation error
Lax-Wendroff	L^{2} stable under CFL $\|a\| \Delta t \leq \Delta x \quad\left[L^{\infty}\right.$ stable if $\left.\|a\| \Delta t=\Delta x\right]$	$O\left((\Delta t)^{2}+(\Delta x)^{2}\right)$
centered explicit	unstable	$O\left(\Delta t+(\Delta x)^{2}\right)$
centered implicit	unconditionally L^{2} stable	$O\left(\Delta t+(\Delta x)^{2}\right)$
upwind	L^{2} and L^{∞} stable under CFL $\|a\| \Delta t \leq \Delta x$	$O(\Delta t+\Delta x)$
Lax-Friedrichs	L^{2} and L^{∞} stable under CFL $\|a\| \Delta t \leq \Delta x$	$O\left(\Delta t+\frac{(\Delta x)^{2}}{\Delta t}\right)$
Beam-Warming	L^{2} stable under CFL $\|a\| \Delta t \leq 2 \Delta x$	$O\left((\Delta t)^{2}+(\Delta x)^{2}\right)$

2. Do you see one advantage to use the Beam-Warming scheme?
3. For the following schemes: Lax-Wendroff, upwind, Lax-Friedrichs and Beam-Warming, show that if $a \Delta t=$ Δx, the numerical solution u_{j}^{n} is equal to the analytical solution at the discretization point $\left(x_{j}, t_{n}\right)$.
4. By using the same tools as the ones used for the Lax-Wendroff scheme in section one, for each scheme of the table above, check its stability properties and its truncation error.
5. Assuming $a>0$, we introduce the third order scheme,

$$
\begin{equation*}
O 3=(1-\delta) L W+\delta B W, \quad \delta=\frac{1+\nu}{3} \tag{8}
\end{equation*}
$$

where $L W$ denotes the Lax-Wendroff scheme and $B W$ denotes the Beam-Warming scheme. Check that this scheme is of order 3 in space and in time.

