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Transport equation with constant coefficients

For a given a € R, we consider the following linear transport equation in one dimension :

{atamamao, V(z,t) € R x R,

u(z,0) = uo(x), Vz € R, (1)

with ug € L (R). Without loss of generality, we assume that a > 0. We refer to the chapter 2, subsection
2.2.1, for the continuous framework of this equation. Here we focus on finding u a discrete approximation of u
thanks to discrete schemes. As in chapter 3, we introduce a discretization of the domain using a regular mesh :
(xj,tn) = (jAz,nAt), Vj € Z, ¥n € N, where Az, respectively At, denotes the space step, respectively the
time step. We also denote u} the approximation of W(x;,tn).

Definition: A scheme is L stable if we can prove the estimate

sup |u?+1‘ < sup |u?| .
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Definition: A scheme is L? stable if we can prove the estimate
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1 Lax-Wendroff scheme

We first focus on the Laz- Wendroff scheme :

n+l _  n no_ .n 2 no_ gy —yn
Uj Ui g W T W1 aPAt 2uf —uf —ujy,
At 2Ax 2 Az?2

= 0. (2)

Q1: Truncation error

The exact solution u of is generally not a solution of the scheme . The truncation error estimates the
difference. Let us assume that the solution of (1)) is such that @ € C3(R x RT).

1. Prove that, for all (z,t) € R x R, 0,1 = a? 9y, 1.

2. Compute the Taylor expansions (“développements limités avec reste de Taylor-Lagrange”) at a convenient
order of w(xj,tny1), W(xjt1,tn), and u(xj_1,t,) at the point (x;,t,).

3. Assuming that enough partial derivatives of % are bounded in L> norm by some constant C' € R, prove
that the absolute value of the truncation error of the Lax-Wendroff scheme is second order both in time
and space.

Q2: L™ stability
1. Show that, for any non-negative values «, 3,7 such that « + 8+ v = 1, then
Ve,y,z € R,min(x,y, 2) < az + By + vz < max(z, y, 2).
2. Using , find «, 8,7 such that u}”l = auj + fuly +yul_y.

3. Provide a necessary and sufficient condition on At, Ax and a ensuring the non-negativity of the coefficients
«, 3, found at the previous question. Deduce the L> stability domain of the scheme.

Q3: L? stability
1. Show that
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2. Deduce the condition under which the scheme is L2 stable.



2 Schemes overview

Centered explicit scheme
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Q1: We assume that ug is a periodic function. Unlike the other schemes, the centered implicit scheme does not
allow, for a given space index j and a given time index n, to express explicitly u"+1 in function of the (u})x. A
linear system has to be solved. Construct the matrix of the linear system, prove it is invertible. Show the L?
stability unconditionally (Hint: compute Ut AU).

Q2: A finite volume scheme for equation can be written
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where f 1 denotes a numerical flux. We still denote v = “A—Axt

Check that the Laz-Wendroff, upwind, Laz-Friedrichs and Beam-Warming schemes can be seen as a finite
volume scheme with
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We sum up in the table below some properties of each scheme :

’ scheme \ stability \ truncation error ‘
Lazx- Wendroff L? stable under CFL |a|At < Az [L stable if [a|At = Ax] O((At) (Ax)z)
centered explicit | unstable (At+ Ax) )
centered implicit | unconditionally L? stable (At + (Az) )
upwind L? and L™ stable under CFL |a]At < Ax O(At+ Az

Laz-Friedrichs L? and L™ stable under CFL |a|At < Ax )
Beam-Warming | L? stable under CFL |a|At < 2Ax o((At Az)?)

Q3: Do you see one advantage to use the Beam-Warming scheme?

Q4: For the following schemes: Laz- Wendroff, upwind, Laz-Friedrichs and Beam-Warming, show that if aAt =

Az, the numerical solution u? is equal to the analytical solution at the discretization point (x5,tn).

Q5: By using the same tools as the ones used for the Laz- Wendroff scheme in section one, for each scheme of
the table above, check its stability properties and its truncation error.

Q6: Assuming a > 0, we introduce the third order scheme,

1
03=(1—68)LW +6BW , 6= ;” )

where LW denotes the Lax-Wendroff scheme and BW denotes the Beam-Warming scheme. Check that this
scheme is of order 3 in space and in time.
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