$21/11/24$

Quantum Fanrior Transform

I - Dinonte Fauriva traurou
\nWe give a reference, the distance function from (DEF)
\n
$$
\frac{D+}{D+}
$$
\n
$$
\frac{1}{2} \int_{0}^{\infty} N \cdot \frac{1}{2} \int_{0}^{\infty} \frac{1}{N} \cdot \frac
$$

$$
= \{e_{i,0} \cdot e_{i,1}, e_{i,0}, e_{i,0}\}
$$
\n
$$
= \{e_{i,0} \cdot e_{i,1}, e_{i,0}, e_{i,0}\}
$$
\n
$$
= \{e_{i,1}, e_{i,0}, e_{i,0}\}
$$
\n
$$
= \{e_{i,1}, e_{i,0}, e_{i,1}\}
$$
\n
$$
= \{e_{i,1}, e_{i,0}, e_{i,1}\}
$$
\n
$$
= \{e_{i,1}, e_{i,0}, e_{i,1}\}
$$
\n
$$
= 1
$$
\n<math display="</math>

Α

$$
\frac{a.\overline{in.anti}: 196\overline{1} or 296\overline{1} or 48\overline{1} or 48\over
$$

$$
\int \sin^{2} \frac{1}{2} \arctan \frac{1}{
$$

The transition formulae of the *the* is a *in*th term
$$
1
$$
 and *in* the *in*th term 1 and *in* the

T = HHL algorithm													
THE goal of He with a dyon	to the end of a. Hence, by the value k in the union	to the end of a. Hence, by the value k in the union	to the sum of a. Hence, we have										
But is done in the denominator	k in the solution	k in the equation											
that is $ R_{1} ^{2} = 4$	l in the equation	l when the x-axis $ R_{2} ^{2} = 4$	l in the equation										
to $\frac{1}{100}$	l when the x-axis $ R_{2} ^{2} = 4$	l in the equation											
to $\frac{1}{100}$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ R_{2} ^{2} = 4$	l when the x-axis $ $

VI - Poicod nearch problem D Siman sproblem In this problem, we bour au oracle (i.e. a function) f: {0,1}-16.9}
such that $\exists s \in \{0,1\}^m$: $\forall x \neq y$ $f(x) = f(y)$ (=s $y = x \oplus \infty$ $\iff \pi$ = $x_i \oplus y_i$ $\forall i \neq i$ The poicod s is unk reason and
we would like to design an aljoiethun $\alpha \oplus b' = \alpha + b$ mod2. $\begin{array}{lll} \boxed{\text{Notz}} & \text{there is only } \sim \\ \text{pair } (x, y) \wedge (t, f(x) = f(y)) \\ \text{as } x = x \oplus x \oplus b = y \oplus x \end{array}$ in DJ is in $\bigvee^{U} \big\{p, p\big\}$. We suffore that we have a quantum pate acting ou $\tilde{\otimes}$ l'o $\tilde{\otimes}$ l' $U_{\downarrow}(1250 \text{ Hz}) = 1250 \text{ Hz} + 12$ We cheft that $Uf^* = Uf = Uf^{\perp}$. Uf^{\perp} \Rightarrow Uf^{\perp} \Rightarrow Uf^{\perp} \Rightarrow Uf^{\perp} $=$ $\mid w >$ thus Up is indeed a mitary transformation. (lassical cont: $O(2^{n/2})$ to determine s. Quantum cost : $O(u)$ [=> organisative advantage] $\frac{1}{10^{56}}$
 $\frac{1}{10^{56}}$
 $\frac{1}{2}$
 $\frac{$ proaf: urrent $\begin{array}{rcl} \mathbb{B} & \text{or } & \text{ofimeter calculation:} \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\omega} \text{ and } \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\omega} \text{ and } \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\omega} \text{ and } \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\omega} \text{ and } \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\omega} \text{ and } \\ \frac{1}{\sqrt{2}} & \text{if } & \mathbb{B}^{\$

$$
\frac{1}{2\frac{11}{2} \sum_{i=1}^{m} 2i\omega + ((-i)^{2i} + (-i)^{2i} + i)(-1)^{2i} + 1
$$
\n
$$
= \frac{1}{2\frac{1}{2} \sum_{i=1}^{m} 2i\omega \ge 0} = 0 \quad \text{if} \quad z_i + \omega_i
$$
\nWe measure $\omega + k$ as ω by ω for z is not a constant, and ω is a constant, and ω

$$
= \frac{\sqrt{n}}{n} \sum_{\mu=0}^{n-1} \omega_1^{23} \sum_{\mu=0}^{n/2-1} (\omega_1^{22})^2
$$
 |y>2
\n
$$
\Rightarrow \int a \text{ where } du \text{ is given by } \frac{1}{\sqrt{n}} \int a \cos(x-1) \cos(x-
$$